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The future of digital systems is complexity, and complex-
ity is the worst enemy of security. -- Bruce Schneier [40]. 
 
ABSTRACT 

The large size and high complexity of security-
sensitive applications and systems software is a primary 
cause for their poor testability and high vulnerability. One 
approach to alleviate this problem is to extract the secu-
rity-sensitive parts of application and systems software, 
thereby reducing the size and complexity of software that 
needs to be trusted. At the system software level, we use 
the Nizza architecture which relies on a kernelized trusted 
computing base (TCB) and on the reuse of legacy code 
using trusted wrappers to minimize the size of the TCB. 
At the application level, we extract the security-sensitive 
portions of an already existing application into an 
AppCore. The AppCore is executed as a trusted process 
in the Nizza architecture while the rest of the application 
executes on a virtualized, untrusted legacy operating sys-
tem. In three case studies of real-world applications (e-
commerce transaction client, VPN gateway and digital 
signatures in an e-mail client), we achieved a considerable 
reduction in code size and complexity. In contrast to the 
few hundred thousand lines of current application soft-
ware code running on millions of lines of systems soft-
ware code, we have AppCores with tens of thousands of 
lines of code running on a hundred thousand lines of sys-
tems software code. We also show the performance pen-
alty of AppCores to be modest (a few percent) compared 
to current software. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures; 
D.4.6 [Operating Systems]: Security and Protection. 

General Terms 
Reliability, Security. 

Keywords 
Application security, trusted computing base. 

1. INTRODUCTION 
Security-sensitive applications such as web browsers 

have grown tremendously in functionality and size. For 
example, the Mozilla browser contains 1 million lines of 
code.  Browsers are used for many applications such as 
carrying out e-commerce transactions (e.g., handling 
credit card information), and viewing and updating per-
sonal information in bank accounts. Unfortunately, the 
growing code size has resulted in an increasing number of 
vulnerabilities.  Attackers have successfully exploited 
these vulnerabilities to obtain private information or in-
stall arbitrary code that modifies the browser [11]. 

At the system level, libraries, middleware and kernel 
also have grown similarly in functionality and size.  For 
example, the X11 window server contains over 1.25 mil-
lion lines of code.  X11 executes with superuser privi-
leges and it has been vulnerable to buffer overflow ex-
ploits in the past [6]. A minimal functional configuration 
of the Linux kernel contains about 200,000 lines of code, 
and the whole kernel runs in privileged mode (x86 archi-
tecture). The Linux kernel too suffers from a host of vul-
nerabilities [7] including buffer overflow, privilege esca-
lation and security bypass.  

One approach to alleviate this problem is to extract 
security-sensitive parts of application and systems soft-
ware, thereby reducing the size and complexity of soft-
ware that needs to be trusted. Building small and simple 
software has been long advocated, e.g., Saltzer and 
Schroeder [38], in 1974, advocated Economy of mecha-
nism, Least privilege and Separation of privilege as im-
portant design principles. Software engineering studies 
have also shown a positive correlation between software 
complexity and bugs in code [21][43]. In addition to the 
increased number of bugs, Schneier [40] argues that in-
creased complexity also hinders the ability to understand 
and model the system, which leads to more difficult test-
ing and analysis stages. Chen et al. argue that it would be 
more secure to run applications on virtualized machines 
than real machines, as a virtual machine monitor is con-
siderably smaller and simpler than a regular operating 
system kernel [15]. 
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The main contribution of this paper is an integrated 
approach to reduce the size of the trusted portion of the 
system. At the systems software level, we use the Nizza 
architecture as our trusted computing base (TCB). Nizza 
is a security architecture that relies on a kernelized TCB 
and on the reuse of legacy code – including whole operat-
ing systems – using trusted wrappers to control the size of 
the TCB. At the application software level, we extract the 
security-sensitive portions of an existing application into 
an AppCore. The AppCore is executed as a trusted proc-
ess on the Nizza architecture and the rest of the applica-
tion executes on a virtualized, untrusted legacy operating 
system.  

We demonstrate the feasibility of this approach by 
implementing AppCores and TCBs for three real-world 
security-sensitive applications (e-commerce transaction 
client, VPN gateway and signatures in an email client). 
Compared to the few hundred thousand lines of code of 
current application software running on millions of lines 
of systems software code, the AppCore’s tens of thou-
sands lines of code running on a hundred thousand lines 
of system code are expected to be amenable to exhaustive 
testing or formal verification methods.  We also show the 
performance penalty of AppCores to be modest (a few 
percent) compared to current software. 

The rest of the paper is organized as follows.  Section 
2 describes the Nizza architecture, its design principles 
and main components. Section 3 describes the construc-
tion of AppCores and TCBs for the three security-
sensitive applications. Section 4 discusses the security 
properties and shows the measured results for code size, 
complexity and performance of the resultant systems.  
Section 5 describes our experiences and observations re-
garding the construction of the AppCores and their 
TCB’s. Section 6 discusses the related work and Section 7 
concludes the paper. 

2. NIZZA ARCHITECTURE 
Nizza is a design for a small, secure and general-

purpose platform supporting applications with high secu-
rity requirements such as digital signatures and banking 
protocols while preserving the support for legacy code 
[23][24].  

2.1 Design Principles 
The Nizza architecture relies on three design princi-

ples: (1) build TCB out of small, isolated components, (2) 
use trusted wrappers to reuse untrusted components and 
(3) support legacy operating systems and applications. 

Security-sensitive portions of many applications ac-
count for only a small fraction of the overall application 
complexity. As it is generally acknowledged that suscep-
tibility to errors and attacks increases with complexity, the 
vulnerability of the security-sensitive part can be de-
creased significantly by isolating this part from the secu-
rity-insensitive part. This leads us to the first design prin-
ciple: Only essential security-sensitive functions should 

be part of the TCB. In other words, the TCB comprises 
only of components that cannot be omitted without com-
promising the functionality and security of the service. 
The security requirements fall into four main categories: 
confidentiality, integrity, recoverability, and availability. 
For clarity, we present the definition of these terms. 

Confidentiality: Only authorized users (entities, princi-
pals, etc.) can access information (data, programs, etc.). 

Integrity: Either information is current, correct, and com-
plete, or it is possible to detect that these properties do not 
hold. 

Recoverability: Information that has been damaged can 
be recovered eventually. 

Availability: Data is available when and where an author-
ized user needs it.  

We limit our work in this paper to confidentiality and 
integrity and Nizza is evaluated only on these two re-
quirements. For many trusted components, data confiden-
tiality and integrity are vastly more important than avail-
ability. Therefore, it is acceptable to use untrusted com-
ponents if higher layers can guarantee the confidentiality 
and integrity of data. Trusted wrappers are components 
that help us achieve security objectives even when un-
trusted components are used. For example, the Secure 
Sockets Layer (SSL) library is a trusted wrapper for un-
trusted networks, as it allows us to use untrusted compo-
nents like the Internet and an untrusted network stack, 
without compromising the confidentiality and integrity 
requirements of the application. Trusted wrappers enable 
the use of untrusted components like device drivers and 
network-protocol stack, allowing us to reduce the size of 
the trusted portion of the system. 

To provide the full functionality of a standard OS, 
Nizza provides containers to securely run untrusted leg-
acy OS components or even complete legacy OSes with 
their applications. Nizza facilitates cooperation among 
security-sensitive and untrusted components; Legacy ap-
plications can use an appropriately designed interface to 
communicate with trusted components, and trusted soft-
ware can reuse legacy components through trusted wrap-
pers. 

2.2 Overview of the Nizza Architecture 
Figure 1 shows a sketch of the Nizza architecture. 

Nizza is composed of four major parts: a small kernel; an 
execution environment consisting of trusted components 
(such as a name-server and window manager); an un-
trusted legacy OS with its applications; and security-
sensitive applications (discussed in Section 3). In all fig-
ures, shaded boxes represent trusted components and 
plain boxes represent untrusted components. 

2.2.1 Kernel 
The basic requirements for the small kernel are that it 

enforces component isolation in protection domains and 
provides fast communication between these domains (re-
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quired for trusted wrappers and other secure-platform 
components). The Nizza architecture is based on the L4 
microkernel [32]. The L4 microkernel provides three ab-
stractions – threads, address spaces and IPCs. Compo-
nents are executed as L4 threads and isolation is enforced 
via address space separation. IPC calls provide a fast 
communication channel to transfer control, data or mem-
ory pages.  

The current L4 interface has some restrictions that 
must be overcome for a complete Nizza implementation: 
It currently lacks kernel-resource control and IPC control. 
Thus, untrusted components cannot be contained com-
pletely. These problems are expected to be fixed in future 
versions of the kernel. 

2.2.2 Execution Environment 
System servers running in the trusted portion provide 

services that are essential to the functioning of the system.  
These servers form the trusted execution environment for 
the secure applications. We refer to the execution envi-
ronment of L4 as L4Env.  

The composition of execution environment varies de-
pending on the needs of the application. The base con-
figuration of L4Env contains a name server and resource 
managers for main memory, CPU, and I/O. In addition to 
these essential services, system server’s specific to each 
application scenario may be incorporated into the TCB. 
The window manager (GUI) is an example of an optional 
component that provides an interface to manage the dis-
play. Additionally, the window manager provides an un-
forgeable trust indicator to the user. The current imple-
mentation of the window manager uses a few pixels at the 
top of the screen, which cannot be accessed by untrusted 
applications, to display the authentication chain of the in-
focus application. The window manager also dims win-
dows that are not in focus to provide an unambiguous 
association between the active window and the authenti-
cation chain [19]. The loader is an optional dynamic 
loader and linker responsible for loading new components 
at runtime. The loader needs to be aware of authenticated 
booting. It establishes the authentication chain and makes 

it available to other trusted components when necessary 
(e.g., to the window manager). 

2.2.3 Support for Legacy Code 
Support for a legacy OS and its applications is critical 

for the acceptance of a new architecture. The current im-
plementation of Nizza architecture supports L4Linux [25], 
a paravirtualized Linux kernel. L4Linux is binary com-
patible with the unmodified Linux kernel and this allows 
the reuse of existing Linux applications. The modified 
kernel is executed as a user level task and is isolated by 
the microkernel. Therefore, it cannot harm the trusted 
components, even if its core, the former Linux kernel, is 
compromised. 

2.3 Hardware Requirements for Nizza 
Nizza relies on hardware support as described in the 

specifications of the Trusted Computing Group [10] to 
support the security properties described above. Specifi-
cally, it relies on authenticated booting to establish a 
chain of authentication for the executing software. The 
authentication chain can be used to reassure a remote 
party about the application being executed (remote at-
testation). Locally, a user can compare the chain of trust 
with a secure copy (e.g., a copy on a USB key) before 
logging into the system. Once logged in, the window 
manger uses the chain of trust to inform the user about the 
trustworthiness of the in-focus application. Sealed storage 
protects the confidentiality of the cryptographic keys that 
are foundations for the security of the rest of the system.  

3. CASE STUDIES IN CONSTRUCTING 
SECURITY-SENSITIVE APPLICATIONS 

Applications that perform security-sensitive tasks or 
handle security-sensitive data have to be trusted. There-
fore, these applications should be as small and simple as 
possible, as long as they satisfy the functionality and se-
curity requirements. The large size of current application 
software code (e.g., 1 million lines of code in a browser) 
makes straightforward porting of existing applications an 
unattractive solution. Section 3.1 presents our solution of 
extracting security-sensitive functionality of existing ap-
plications into a small AppCore. The AppCore is then 
executed as a trusted process, while the rest of the appli-
cation executes as an untrusted process.  

3.1 Constructing AppCores  
The process of extracting an AppCore from an exist-

ing application can be broadly divided into three stages: 
(1) analysis of the application to identify security-
sensitive components, (2) extracting the identified com-
ponents and composing them into an AppCore and (3) 
modifying the original application to use the AppCore for 
security sensitive tasks. 

The function of the analysis stage is to identify com-
ponents that handle security-sensitive data or perform 
security-sensitive functions. If the application has reason-
able documentation, this step can be accomplished by 

Figure 1. Overview of the Nizza Architecture. Shaded boxes 
represent trusted components. 
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analyzing the documentation, e.g., the Mozilla browser 
for the E-Commerce transaction client scenario (Section 
3.2) is well documented and has clearly-defined modules 
making identification easier. Otherwise, we have to 
manually identify security-sensitive functions based on 
domain knowledge, as in the case of the VPN gateway 
AppCore (Section 3.2). This stage can be partially auto-
mated by using dataflow analysis, as described in [14].   

In the next stage, we extract the security-sensitive 
components and integrate them into a standalone 
AppCore. There are two factors that control component 
integration: First, to the greatest extent possible, we want 
to reuse the interfaces between the security-sensitive com-
ponents and the rest of the application, and second, we 
want to constrain the security-sensitive components to 
perform only the requisite security-sensitive tasks. Reus-
ing existing interfaces simplifies the reintegration of the 
AppCore with the application. Constraining security-
sensitive components involves modifying or rewriting 
components to perform the necessary security-sensitive 
task with least amount of software, e.g., substituting 
Mozilla’s NSS module with a bare-bones SSL library, 
MatrixSSL, provides size savings over two orders of 
magnitude. However, this could also break existing inter-
faces and increase the cost of reintegration. Thus we have 
two conflicting factors influencing component integration. 
The design choices are discussed in greater detail in Sec-
tion 5.   

The final stage consists of going through the compo-
nents in the original application and replacing the existing 
function calls to security-sensitive modules with calls to 
the new AppCore. In our case studies, this turned out to 
be a straightforward process as we were either reusing 
interfaces or the application had a plugin architecture and 
we connect the application to the AppCore via plugins.  

We study three distinct applications: an e-commerce 
transaction client, a VPN gateway implementation and an 
email signer. The applications provide variety in terms of 
security properties and implementation complexity. The 
e-commerce transaction client protects the confidentiality 
and integrity of user data, the VPN gateway software pro-
tects the confidentiality and integrity of the private net-
work’s data and the email signer provides integrity of 
email content. The e-commerce transaction client and the 
email signer are standalone applications that require 
analysis of a single software program. On the other hand, 
the VPN gateway implementation requires analysis of a 
multi-level software stack, including the operating system 
kernel (network protocol stack) and the security library. 

3.2 E-Commerce Transaction Client 
The most popular tool for carrying out an e-

commerce transaction is a browser. Browsers perform two 
critical functions for e-commerce – they display content, 
in a format determined by the merchant, to the user and 
they accept user input and pass them along to the mer-
chant. Data transfers can be protected using a transport 

layer security protocol like SSL or TLS. In a typical e-
commerce transaction, initially, the customer builds up a 
shopping cart, which can involve multiple rounds of mer-
chant-customer interaction. Next, the customer decides to 
finalize the transaction. At this point most merchants use 
a transport layer security protocol to protect any further 
communication. Once a secure layer has been established, 
the customer provides the merchant with payment infor-
mation or unique login information to retrieve a profile. 
The merchant verifies this information and finalizes the 
transaction.  

The large code base of browsers and the support for 
extensions via tightly integrated (i.e. executing in the 
same address-space) plugins hinder effective testing of 
browsers. Browsers are sources of multiple vulnerabilities 
including arbitrary code execution and security bypass 
[4][5]. Browsers also suffer from spoofing vulnerabilities 
where the attacker is able to fool the user into mistaking 
an arbitrary site for a trusted site. Attackers have success-
fully exploited these vulnerabilities to install malicious 
plugins, and steal private information like passwords and 
credit card information. These vulnerabilities illustrate the 
risk in using a browser to carry out security-sensitive op-
erations like online purchases. On the other hand, since a 
majority of merchants and consumers prefer to use the 
browser as a transaction tool, an effective solution must 
work within the framework of the browser. 

Table 1: Modules in the Mozilla Browser [2] 
Type Example Modules 

Main Browser Browser, Portable Runtime, Display Wid-
gets, New HTML Parser. 

Security Security (NSS & JSS). 

Scripting Javascript Engine, Rhino, Live Connect. 

Security-
Extras 

Personal Security Manager, JS Security. 

UI-
Enhancements 

Clipping & Compositing, Find as you type, 
ImageLib, accessibility. 

Parsing-Extras RDF, DOM, XML, XSLT, MathML. 

Extras I18N, URI Loader, Zlib, Qt support, Cook-
ies, Plugins, Preferences, Update. 

The security-sensitive data in an e-commerce transac-
tion client is the user’s payment and shipping information, 
the shopping cart that is displayed to the user, and the 
user’s choice about the transaction. Upon analysis of the 
browser’s components (Table 1), we find that the follow-
ing components are security-sensitive: the main browser, 
which contains the parser, the display, the security library 
and basic user-interface components. These components 
form a significant portion (over 50%, 500 KLOC) of the 
browser’s code base. Composing them into an AppCore 
would result in a trusted application smaller than the 
original browser, but we can achieve better results by 
refining the selected components. We simplify the se-
lected components by limiting their functionality. For 
example, constraining the language describing the shop-
ping cart would allow for a smaller parser and display 
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interface.  Similarly, implementing only the most used 
cryptographic mechanisms would significantly reduce the 
size of the security library. We now consider these com-
ponents in more detail. 

Browser Parser. This browser component has to un-
derstand a variety of HTML and XML standards with 
multiple variants.  A shopping cart, for example, can be 
described in detail using sophisticated tags and templates.  
While this is an expected good usability feature, it intro-
duces potential vulnerabilities due to growing code size. 
A cart described using the table tags in HTML would 
require a small and specialized parser. As shown in Sec-
tion 4.2, this specialization helps us achieve significant 
reductions in the code size and complexity of the 
AppCore. 

User Interface. There are many demands on a ge-
neric web browser; their functionality has to include the 
display of text and images in multiple formats, support 
novelties such as tabbed browsing and skins, etc. In con-
trast, a small interface designed for a shopping cart would 
focus on the unambiguous display of the cart content and 
a clear way to accept or decline the transaction.  Our 
AppCore uses a text-box-based interface that displays the 
table and presents the user with a confirmation window.  
We were able to implement this functionality with less 
than 500 LOC.  While our current interface is primitive, 
given the limited expressiveness of the cart data, we ex-
pect that even a more sophisticated interface would be 
orders of magnitude smaller than a generic browser. 

Security Library.  A library implementing either the 
SSL or TLS protocol is necessary to carry out secure 
transactions over the Internet.  In our implementation, we 
use MatrixSSL [3], an SSL library with a small footprint 
originally developed for embedded systems.  The library 
provides a minimal set of standard algorithms necessary 
for SSL.  At less than 10 KLOC it is significantly smaller 
and less complex than SSL library in Mozilla (NSS mod-
ule in Mozilla is over 180 KLOC).   

AppCore. The parser, security library and the user 
interface components are put together to form the 
AppCore of the e-commerce transaction client. The over-
all system, depicted in Figure 2, consists of the AppCore, 

labeled as E-Commerce Transaction Client, the microker-
nel and an execution environment with the basic L4Env 
and a trusted window manager (GUI). The AppCore relies 
on an untrusted socket interface proxy to communicate 
with the external network. This is a concrete example of 
the use of trusted wrappers: We use SSL in the AppCore 
to protect the confidentiality and integrity of the data be-
fore passing it over to the proxy. Hence we can afford to 
use an untrusted network stack for communication. 

3.3 VPN Gateway 
A Virtual Private Network (VPN) is a private net-

work that uses public networks for communication. VPN 
gateways are used to provide confidentiality, authenticity 
and integrity for private network data. These gateways 
behave like trusted wrappers, using a tunneling protocol 
like IP Security Protocol (IPSec), Point to Point Tunnel-
ing Protocol (PPTP) or Layer 2 Tunnel Protocol (L2TP) 
to satisfy the security requirements. In IPSec-based 
VPNs, all messages are encrypted using IPSec-compliant 
tools before sending them over public networks (e.g., the 
Internet).  Therefore, the VPN gateway acts as the guard 
at the border between networks of different trust/security 
levels.   

The majority of current VPN implementations are 
based on monolithic operating systems (e.g., Linux).  In 
this case, the IPSec implementation is integrated with the 
kernel and intertwined with the network subsystem.  Con-
sequently, vulnerabilities in the kernel, the network sub-
system or security library can be exploited to compromise 
the VPN software. Some of the vulnerabilities include 
buffer overflow [8], which can be used to gain control of 
the VPN system, and information leak vulnerabilities, 
which allow an attacker access to sensitive information. 

A software based VPN implementation generally 
contains an operating-system kernel, possibly a stripped 
down version (e.g., Snapgear’s Embedded Linux), and an 
implementation of the tunneling protocol (e.g., 
FreeS/WAN library provides an IPSec implementation). 
We discovered that the security-relevant functions of a 
VPN gateway implementation – data protection and pol-
icy enforcement – comprise only a small fraction of a 
monolithic kernel (less than 5%). We analyzed the 
FreeS/WAN implementation for Linux to identify the data 
protection and policy enforcement functions, which were 
then extracted into a AppCore called Viaduct. 

AppCore.  Figure 3(a) illustrates our initial imple-
mentation of the VPN gateway called Mikro-SINA, which 
is described in detail in an earlier paper [26]. Mikro-SINA 
consists of three main components: On the right is the 
private code that interacts with the private network.  On 
the left is the public code that interacts with the Internet.  
In our initial implementation, the private and public net-
work code each use a separate, fully featured L4Linux 
VM. Interactions between the two VMs are mediated by 
Viaduct. To ensure confidentiality and integrity of private 
data, the Viaduct encrypts all traffic before passing it to 

Figure 2. AppCore and TCB for a Transaction Client 
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the public L4Linux VM. Conversely, the Viaduct decrypts 
the data it receives from the public L4Linux VM and veri-
fies the integrity of the data before passing it to the pri-
vate L4Linux VM. Therefore, the untrusted public code 
can only access encrypted data (IPSec ensures confidenti-
ality and integrity of data). Although the private VM can-
not leak information through Viaduct, it can see plaintext 
data and therefore has to be trusted as much as the rest of 
code on the private side.  Hence, the size of the private 
L4Linux VM is an added concern.  

In an effort to further improve the security properties 
of the Mikro-SINA VPN, we refined the private L4Linux 
VM.  Instead of the full L4Linux VM, we now use cus-
tomized, small components that only perform the func-
tions required for a fully functional VPN gateway.  The 
result is shown in Figure 3(b).  The private side L4Linux 
is replaced by the NIC driver plus an address resolution 
protocol (ARP) that translates IP addresses into link layer 
addresses (e.g., Ethernet MAC address).  The public side 
L4Linux is replaced by a standalone TCP/IP stack imple-
mentation. The TCP/IP implementation is a port of the 
Linux 2.4 network stack and it runs directly on top of the 
trusted platform as an untrusted process.  

3.4 Signatures in an Email Client – Enigmail 
Email signing is used to protect the integrity of the e-

mail content. When a user wants to sign an email, he acti-
vates an extension, which reads the user’s private key and 
signs the email’s content. In some cases, the private key 
may be in encrypted format, and the user must provide a 
passphrase to decrypt the key. The content and the signa-
ture can now be sent over an unprotected network. 

Mozilla Thunderbird is a standalone email client that 
supports email signing via a third-party plugin – Enig-

mail. Enigmail uses the GnuPG library to read the user’s 
private key and sign emails. Enigmail relies on Thunder-
bird to communicate with the user and maintain 
passphrases. Effectively, Enigmail has to rely on the cor-
rectness of the email client and the multitudes of plugins 
that can be installed on the Thunderbird client to perform 
its security-relevant functions correctly. Thunderbird 
alone contains over 200 KLOC, making it a very difficult 
task to ensure correctness of the email client. Thunderbird 
also shares some of the libraries with the Firefox browser 
(e.g., HTML parser), thereby sharing the vulnerabilities 
too. 

Table 2: Modules in Mozilla Thunderbird 
Type Example Modules 

User Interface Folder view, Email compose 

Account Mgt. Address book, Mail account controls 

Extras Spell checking, Junk mail control, Mes-
sage filters, Themes, Software Update 

Security Password manager, Certificate manager, 
Enigmail (as plugin) 

To sign an email in Thunderbird, the user selects the 
signing option, composes the email and clicks the send 
button. The Enigmail plugin then retrieves the passphrase 
for the user’s private key and sends it along with the con-
tents of the email to the GnuPG library. GnuPG retrieves 
the key, signs the email and sends it back. The security 
requirements for the Enigmail plugin are confidentiality 
and integrity for the user’s private key and passphrase and 
integrity of the content of the email that is signed. Table 2 
presents a list of identifiable modules in Thunderbird. The 
security modules along with the user interface modules 
need to be extracted to satisfy the security requirements. 

 
Figure 3. Mikro-SINA. A VPN Gateway implementation on the Nizza Architecture. Viaduct is the AppCore 

proper. The VM on the right, in (a), and ARP/IP Routing software, in (b), are also trusted components. 
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AppCore. The AppCore must be capable of perform-
ing two functions: First, display the content of the email 
in an unambiguous fashion, and second, depending on the 
user’s preference, sign the email with the user’s private 
key. It is important to note that plaintext content is avail-
able to the untrusted component even before signing. It is 
the user’s responsibility to ensure that the content has not 
changed when the untrusted application passes it to the 
AppCore. Since the content is signed in the trusted part, 
the key management functionality (GnuPG library) must 
be included in the AppCore. The Enigmail AppCore dis-
plays the textual content of the email and waits for user 
input. Depending on the preference and the passphrase 
provided by the user, the email is either signed and sent 
back to the client or discarded. Currently, Enigmail’s 
AppCore is limited to displaying text, but it is possible to 
add display modules for other standard attachments. 

4. EVALUATION 
We implemented the AppCores for the three applica-

tions on the Nizza architecture (Section 2). The AppCores 
are executed as trusted processes, directly on top of the 
microkernel. The untrusted components of applications 
run on top of L4Linux, a virtualized, untrusted operating 
system. The TCB for each application consists of the L4 
microkernel and a set of basic resource managers. In the 
e-commerce transaction and the Enigmail scenarios, the 
TCB also includes a window manager (GUI).  

We choose a trusted computing base based on the 
Linux kernel as a competing implementation as we have 
unencumbered access to its source code. Moreover, the 
Linux platform has open-source implementations for all 
three applications. The trusted computing base must con-
tain the Linux kernel. In the case of the e-commerce trans-
action client and the email client, the X Server is also a 
part of the trusted computing base. 

Section 4.1 discusses the impact of AppCores on the 
security of the system. In Section 4.2, we show that it is 
possible to construct TCBs for real-world applications 
within 100,000 LOC. Section 4.3 discusses the perform-
ance penalty incurred by using AppCores instead of the 
original application and we show that the performance 
drop is modest in most cases. 

4.1 Security Properties of AppCores 
The main focus of the AppCore research is to reduce 

the size of the trusted computing base at the operating 
system, middleware and the application layers. A smaller 
and simpler code base has two advantages – a smaller 
code base for testing and analysis and a smaller attack 
profile. A smaller code base eases the software assurance 
process and Section 4.2 discusses the reductions achieved 
in greater detail. The lack of an extension architecture is a 
concrete example for attack profile reduction in the e-
commerce transaction client and the Enigmail client. Vul-
nerabilities in the extension architecture and malicious 
extensions have been used to compromise the confidenti-
ality and integrity of content [11]. Since extensions are 
extraneous to security requirements in our case studies, 
the resultant AppCores do not possess an extension archi-
tecture. Note that the extension architecture is missing 
only in the trusted part of the application. The original 
application retains its extension architecture; therefore, we 
are able to improve security without sacrificing user ex-
perience.  

The Nizza architecture provides confidentiality and 
integrity of data at the operating system and middleware 
level. These properties are extended to the application 
layer by the AppCores. In the e-commerce transaction 
client and the VPN gateway scenarios, the AppCores pro-
vide confidentiality and integrity of data by using a trans-
port layer security protocol like SSL or IPSec to encrypt 
data before handing it over to untrusted components. The 
Enigmail scenario requires integrity of email content, 
which is enforced by signing the email with the user’s 
private key before passing the content and the signature to 
the untrusted application.  

Recall that the Nizza architecture provides us with a 
trusted window manager that controls the top portion of 
the screen (Section 2.2.2). The top of the screen, which 
acts as an unforgeable trust indicator, is used by the win-
dow manager to indicate the trust level of the in-focus 
application. We assume that the users are a part of the 
TCB, i.e., they are aware of the trust indicator when they 
give out sensitive data or perform security-sensitive op-
erations.  Since, untrusted applications cannot modify the 
trust indicator, interface spoofing attacks are minimized.  

It is important to note that AppCores do not address 
the issue of availability, e.g., malicious entities could 
carry out denial of service attacks by corrupting content, 
hijacking the untrusted applications, or dropping packets 
carrying content from, or to the trusted applications. 
While AppCores can detect these attacks, or infer their 
presence due to degradation of service, they cannot pro-
tect the application against such attacks. Defensive pro-
gramming techniques [34] can be used to make AppCores 
more resistant to these types of attacks. 

4.2 Software Complexity Metrics 
Given the expected order-of-magnitude differences in 

code size, the comparison between an application and its 

Figure 4. AppCore for Email Client 
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AppCore do not require a very precise metric.  Therefore, 
we chose well known software complexity metrics - 
Source Lines of Code (LOC), measured using SLOC-
Count [48], and McCabe’s complexity metric (MCC) 
[33].  Our goal is to show the overwhelming advantage of 
AppCores from many angles, not to distinguish fine dif-
ferences.  

Many software engineering studies have shown that 
the LOC metric is roughly correlated with the number of 
defects [21][43], which may be relatively imprecise, but 
serves as a useful baseline measure [13].  MCC is based 
on McCabe’s definition [33] of a control flow complexity 
metric.  It is measured per function and it gives the num-
ber of distinct execution paths in a given function. Intui-
tively, it represents the minimum number of tests that 
need to be carried out on that function to verify control 
flow properties.  One of the weaknesses associated with 
the MCC metric is its omission of call nesting depth [44].  
So, we also include measurements of call depth as a sepa-
rate parameter in our evaluation. 

We are aware that traditional software complexity 
metrics like MCC and SLOC have their disadvantages, 
e.g., their dependence on programming language and style 
[20]. Some of the original applications have had post-
release periods in terms of years allowing for multiple bug 
fixes, whereas our approach will result in relatively new 
AppCores. Our argument is that vulnerabilities are still 
being consistently found in those applications [4][5]. We 
show that AppCores are considerably smaller and simpler, 
providing us with a clear advantage in testing. 

4.2.1 E-Commerce Transaction Client AppCore 
Before we compare the code size, we briefly discuss 

the functional equivalence between the two programs (our 
e-commerce transaction client AppCore and a generic 
web browser such as Mozilla) as well as their security 
goals.  Both approaches support a shopping cart-based 
electronic commerce application, with secure data trans-
mission between the client and server typical of such se-
curity-sensitive applications.  The data confidentiality and 
integrity requirements are fulfilled by a secure transport 
protocol such as SSL. Table 3 shows the contrast between 
a generic browser-based application and an AppCore-
based approach. We compare the software complexity (in 
LOC, MCC, and call depth) of the security-sensitive code 
from the two approaches. The AppCore simplifies the 
functionality of the security-sensitive code in two main 
components: a smaller SSL library and a very narrow 
subset of HTML to describe the cart. We observe the 
simplification of components provides considerable re-

ductions in software size. The entire AppCore is about 
one hundredth the size of the Mozilla browser.  Similar 
reductions are seen with the MCC metric.  

4.2.2 VPN Gateway AppCore 
The initial Mikro-SINA VPN design (Figure 3a) that 

uses L4Linux for the private network code results in a 
system with a large code base that needs to be trusted (~ 
200 KLOC for L4Linux). The minimalized Mikro-SINA 
(Figure 3b) resolves the problem by refining the trusted 
processes, replacing L4Linux (on both private and public 
sides) with customized network stack.  The result is a 
very small VPN gateway, both in terms of trusted 
AppCore and a relatively small untrusted networking 
code, with about 80 KLOC on the public side, and a small 
ARP component (8000 lines) on the private side. Table 4 
compares the software complexity of Mikro-SINA to the 
FreeS/WAN implementation. The Linux kernel numbers 
are obtained from Snapgear’s Embedded Linux distribu-
tion [9]. The Mikro-SINA VPN possesses a twofold ad-
vantage in complexity and size over the FreeS/WAN im-
plementation. 

4.2.3 Enigmail AppCore 
The original Enigmail plugin is tightly integrated 

with the Thunderbird email client. It also relies on the 
GnuPG library to sign and verify emails. The AppCore 
for Enigmail has its own display and user input modules 
but it still requires the GnuPG library to sign emails. 
Thunderbird, Enigmail and the GnuPG library together 
account for over 250 KLOC, whereas the Enigmail 
AppCore which includes the ported GnuPG library con-
tains less than 54 KLOC. The results for MCC metric 
show a fourfold reduction in complexity – 11,000 for the 
AppCore and 45,000 for the Thunderbird application 
along with the GnuPG library. 

Table 3: Complexity Comparison of E-Commerce Trans-
action Client AppCore and Mozilla. Level of shading indi-
cates functional equivalence of components. 

Component LOC Cumul. 
MCC 

Avg. 
MCC 

Avg. 
Depth 

MatrixSSL         8,600         1,200        7.5 1.70

Mozilla-NSS     180,000       24,700        8.7 1.47

Custom Parser            200              35        5.8 1.70

HTML-Mozilla       19,000         3,100      15.3 2.08

AppCore       10,000         1,500        7.4 1.67

Mozilla  978,000     151,000        6.2 1.72

Table 4: Complexity Comparison of Mikro-SINA and FreeS/WAN 
Component LOC Cumul. MCC Avg. MCC Avg. Depth 

Mikro-SINA Viaduct     10,400          990        4.1 1.31 

FreeS/WAN     34,100        4,300        7.9 1.56 

Mikro-SINA VPN + L4+L4Env+Viaduct     74,000        10,000        4.6 1.54 

FreeS/WAN + Snapgear Linux   155,000      25,000        5.8 1.59 
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4.2.4 Software Complexity of a TCB 
We have seen that at the application level, refactoring 

and refining an application significantly reduces code size 
and complexity. Since the AppCores will be running on 
top of a TCB, it is also necessary for the TCB to be rela-
tively small and simple. Using a Linux kernel (over 200 
KLOC) as a TCB would run counter to the notion of a 
small TCB. 

The composition of the TCB varies depending on the 
requirements of the AppCore. The microkernel is an inte-
gral part of our TCB. The basic L4Env consists of re-
source managers, naming service and an IO server. The 
window manager (GUI) and loader are optional compo-
nents. An AppCore like Mikro-SINA would require just 
the basic configuration. AppCores like trusted email 
signer and transaction clients would require a GUI en-
abled TCB. A dynamic loader is required for situations 
where a user or application would like to load new trusted 
applications. Table 5 lists the complexities of the various 
TCB components and configurations. Since some files are 
shared between various servers, each progressively com-
plex TCB configuration does not increase proportionally 
in size and complexity. The first observation from the 
measurements is that significant size and complexity re-
ductions can be attained with careful composition of the 
TCB. Secondly our TCB configuration is an order of 
magnitude smaller than a Linux based platform. 

4.3 Performance 
Our approach of refactoring applications generates 

two processes coordinating to perform a task that previ-
ously required a single process. While refactoring im-
proves security, as now a smaller portion of the original 
application has access to sensitive data, it also results in 
performance degradation. There are two main contribu-
tors to the performance penalty: first, the overhead of 
running the application on top of a virtual machine and 
second, data transfer and context switch times between 
the AppCore and the application. The issue of application 
performance on L4Linux has been addressed in detail in 
an earlier work [25]. The conclusion was that perform-
ance penalty for most applications can be contained 
within the 5-10% range.  

We present the results of a series of micro-
benchmarks to demonstrate the performance of the main 
L4 - L4Linux interactions. 

4.3.1 Data Transfer Rates between L4Linux & L4. 
The following experiments were performed on a Pen-

tium-4 2.24 GHz machine with 512 MB RAM and front 
side bus speed of 400 MHz. The standard deviation for 
the experiments in this section is less than 1 % of the 
mean. 

Each L4Linux process is implemented as an L4 task 
[25]. Communication between an L4 process and an 
L4Linux process uses L4’s IPC mechanism, which is in-
dependent of the guest operating system (L4Linux). 
Therefore we just have to measure communication latency 
and throughput between two L4 tasks. L4 provides multi-
ple ways for inter-address space communication and data 
transfer. We discuss two of them - Direct IPC, which uses 
registers to transfer data and Indirect IPC, which uses 
string copies to transfer data.  

The results in Table 6 are for inter-address space di-
rect IPC, in which 32 bits of data is transferred via regis-
ters. The client calls the server with a receive-timeout 
value and the server replies with a 32 bit value in a regis-
ter. Since L4 optimizes the infinite-timeout-value (inf-
timeout) data transfers, we present the results for inf-
timeout and a nominal one-second-timeout data transfer. 
The context switch times are calculated from the through-
put values (Inverting the throughput value and dividing 
by two). We can see that direct IPC is not suited for data 
transfers due to low throughput, but they can serve as an 
inexpensive notification mechanism. 

L4 provides support for fast data transfers via indirect 
string transfer IPCs. In our experiments, the client calls 
the server with an inf-timeout value and the server replies 
with an indirect string, which is copied to the client’s ad-
dress space. Table 7 compares the throughput of indirect 
IPC against FIFO’s in Linux. We see that the maximum 
throughput values in both systems are comparable. 

Table 6: 32 Bit Transfer: via registers 
Client Timeout Throughput (MBps) Context Switch (us) 

Inf. Timeout 2.90 0.690 

1 sec Timeout 1.73 1.158 

Table 5: Complexity of the Trusted Computing Base 
Component LOC Cumul. MCC Avg. MCC Avg. Depth 

L4 microkernel 14,000 2,300 3.5 1.39 

Basic L4Env 54,500 7,000 5.0 1.58 

GUI 35,600 4,600 6.7 1.36 

Loader 37,000 5,000 5.7 1.69 

Basic TCB: microkernel +  Basic L4Env 69,000 9,500 4.5 1.54 

Basic TCB + GUI 87,600 12,300 5.2 1.48 

Basic TCB + GUI + Loader 100,200 14,000 5.2 1.50 

Linux Kernel + XServer 1,485,000 238,000 7.7 1.73 
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Table 7: Data Transfer Throughput in MBps.  
Linux FIFO vs. Indirect String Transfer in L4. 
Size  

(Bytes) 
FIFO 

(Linux) 
Indirect String 
Transfer (L4) 

256 68.95 88.01 

4,096 588.55 863.81 

8,192 664.69 792.17 

16,384 799.03 801.70 

32,768 822.22 763.89 

65,536 879.94 715.95 

 

4.3.2 E-Commerce Transaction Client 
We now measure the time to carry out a typical e-

commerce transaction using the transaction client 
AppCore. The transaction client initiates an SSL connec-
tion and receives the cart from the web-server. It displays 
the cart and waits for the user’s response. Depending on 
the user’s response, the client either sends the user’s pay-
ment and shipping information back to the server and 
finalizes the transaction or aborts it. Since we are inter-
ested in finding out the minimum time to execute the 
transaction, we eliminate user-interaction by assuming 
that the user always wants to accept the transaction. Table 
8 lists the server-side execution time for a transaction 
over a loopback interface. Each column title represents 
the execution environment of the client and server respec-
tively. The execution time for the trusted scenario (L4 - 
L4Linux) is around 11 % slower than the Linux scenario. 
But in absolute terms, the execution time is less than 50 
ms, which is insignificant when compared to user re-
sponse time (order of seconds). 

Table 8: Execution time for an E-Commerce Transaction 
Client-Server 

pairs 
Linux- 
Linux 

L4Linux - 
L4Linux 

L4 - 
L4Linux 

Time (ms) 39.1 40.2 43.5 

Stdev % 0.2 10.6 8.0 

4.3.3 Mikro-SINA VPN Gateway 
Table 9 presents the throughput results from the Net-

perf TCP_STREAM benchmark for the competing VPN 
implementations. The experiment duration per test run 
was 1 minute. The VPN implementations ran on a Pen-
tium-4 1.80 GHz machine with 512 MB RAM and two 
EEPRO Fast Ethernet enabled cards. In the FreeS/WAN 
implementation, a single process handles both the external 
and internal interfaces. This design minimizes overhead 
and allows FreeS/WAN to achieve higher throughput. On 
the other hand, Mikro-SINA separates the handling of the 
external and internal interfaces. The separation adversely 
affects the performance as shown in Table 9 but provides 
better security features as an attack on the external inter-
face will not provide the attacker with access to plaintext 
data.  

Table 9: Throughput Comparison of Mikro-SINA and 
Free/SWAN. All numbers are in Mbps. 

Encryption Linux-2.4 FreeS/WAN Mikro-SINA 

Null 94.9 93.9 

3DES-MD5 63.8 32.2 

5. LESSONS LEARNED 
The construction and evaluation of AppCores and 

their TCBs presented us with some insights. Some of our 
observations are straightforward – AppCore construction 
is easier if we can establish a clean separation between the 
security-sensitive and security-insensitive portions. This 
is possible if (a) the original application has a well-
defined and well-documented modular design and (b) the 
security-sensitive task spans a small subset of the mod-
ules. Other observations revealed themselves as crucial 
design-decisions during the construction process.  

Identifying the Point of Separation: Sacrificing per-
formance for security 

Deciding on the point of separation is a straightfor-
ward process in many cases. For example, in the e-
commerce transaction scenario, the point of separation 
occurs when the user has to input security-sensitive data 
(profile or payment information) and in the email client 
scenario, the point of separation occurs when the user has 
to enter a passphrase to retrieve his key. 

However, there are cases where there is more than 
one point of separation – generally involving a tradeoff 
between performance and modularity. For example, in the 
FreeS/WAN implementation, IPSec policy enforcement 
occurs at the IP layer, whereas the actual encryp-
tion/decryption occurs after the TCP layer. This optimiza-
tion improves performance as the IP layer can drop pack-
ets that do not confirm to the policy rather than dropping 
the errant packets after transport layer processing. But 
modularity is sacrificed as the security subsystem is now 
entangled with other functionality. During the construc-
tion of the VPN gateway AppCore, we had three choices 
(a) incorporate the network stack into the TCB (b) keep 
the network stack out of the TCB and replace IPSec func-
tion calls from the untrusted network stack with IPC calls 
to the trusted components or (c) keep the network stack 
out of the TCB and sacrifice the performance optimiza-
tions at the IP layer. The first choice was not really con-
sidered as it would mean increasing the size of the TCB 
by almost half (40,000 LOC). The second option resulted 
in a messy separation as there were trusted calls from 
multiple layers of the network stack (IP layer needs access 
to IPSec policy and TCP layer provides the packets for 
encryption/decryption). The third option sacrifices some 
performance by eliminating the optimizations from the 
network layer but results in a simpler interface between 
the trusted IPSec implementation and the untrusted net-
work stack (send and receive packets).  
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Extracting security-sensitive components: Reusing 
existing interfaces simplifies separation and reintegra-
tion  

Ideally, when we split an application into security-
sensitive and security-insensitive parts, we would like to 
retain the interface between the two parts. Reusing exist-
ing interfaces allows us to limit the changes to modifying 
the call type, e.g., changing security-sensitive function 
calls to L4 IPC calls with appropriate marshalling and 
unmarshalling code. This involves identifying the location 
of the calls, which can be accomplished with tools in most 
cases. If the original application possesses a plugin archi-
tecture (e.g., plugin architecture in Mozilla Thunderbird), 
this task is even simpler, as we just have to write a plugin 
that acts as a bridge between the AppCore and the un-
trusted application.  

Refining security-sensitive components: Reducing 
complexity through manual analysis 

Once we have extracted security-sensitive compo-
nents, we can achieve further reductions in size and com-
plexity by refining the components to perform only the 
requisite security-sensitive tasks. This requires consider-
able manual effort; for each component that can be re-
fined, we have to incorporate simpler alternatives. This 
often breaks the interfaces between the security-sensitive 
components but it is worth the effort as we gain enormous 
savings in terms of software size and complexity.  

For example, we considered various alternatives 
when replacing the HTML parser from Mozilla (19K 
LOC) for the E-commerce transaction client. Our first 
step was to use the Expat XML parser, which contains 
about 10K lines of code. The use of XML allowed us to 
have rich, extensible language for the shopping cart. But 
it represented over 50% of the final AppCore. This led us 
to consider various alternatives for a shopping cart de-
scription language – trading off extensibility for size and 
complexity (plain text could be ambiguous for the user, 
compressed image formats require complex parsers, and 
raw images consume too much bandwidth). Finally, we 
settled on the table tags of HTML to describe a shopping 
cart. Since we changed the shopping-cart description for-
mat, we had to change the parser for the AppCore and the 
remote agent (usually a web-server) involved in the trans-
action. On the other hand, the custom parser provided 
limited extensibility and size and complexity savings over 
one order of magnitude (Table 3).  

The initial design for the VPN gateway (Section 3.3) 
had a full-fledged Linux-based VM as a trusted compo-
nent. While the underlying TCB prevents the private VM 
from communicating with untrusted components or the 
external network, we would have to rely on its correctness 
to preserve the confidentiality and integrity of plaintext 
data. Since the private VM is just used to transmit packets 
over the private network, we decided to replace it with 
ARP/IP routing software. While this required reprogram-
ming the AppCore and getting the ARP code to run as a 

standalone process, we were able to replace the 200 
KLOC of L4Linux with 8 KLOC of ARP code. 

Trusted Wrappers: Tradeoffs between system com-
plexity, security and performance 

Trusted wrappers are components that enable the 
utilization of untrusted components in lower layers of the 
system. We were able to reuse the network stack execut-
ing in an untrusted and virtualized legacy operating sys-
tem as we used security protocols like SSL (E-commerce 
transaction scenario) and IPSec (VPN gateway scenario) 
to protect the confidentiality and integrity of data. The use 
of trusted wrappers allowed us to push the TCP/IP stack 
out of the TCB, which resulted in savings of over 40 
KLOC. This approach also provides another significant 
advantage: we retain the full functionality of the original 
network stack implementation, which cannot be provided 
by alternate solutions like lightweight TCP/IP implemen-
tations. 

Trusted wrappers do not come for free. We can look 
at trusted wrappers as exploring tradeoffs in two different 
areas. The first tradeoff deals with attacks: attacks on con-
fidentiality and integrity on one hand and attacks on avail-
ability on the other. Trusted wrappers allow us to (re)use 
untrusted components. We are therefore exposing a 
trusted application to denial of service attacks via the 
reused untrusted components. On the other hand, we are 
also reducing the attack profile for attacks on confidenti-
ality and integrity by reducing the size of the trusted ap-
plication. This is an acceptable tradeoff as in many situa-
tions confidentiality and integrity of data is more impor-
tant than availability. Moreover, there could be other 
components in the system, beyond our control, which are 
susceptible to denial of service attacks, e.g., the Internet 
in a web-based application. The second tradeoff is one of 
security and performance. We have shown that perform-
ance degradation is modest (few percent) in most cases, 
and we feel that the gains in security outweigh the losses 
in performance.  

6. RELATED WORK 
A summary of existing techniques to protect the vari-

ous components of a system is presented in Figure 5.  

6.1 Application Software Design 
Privilege separation [14][30][36] is a technique 

wherein the portions of a application that require high 
privileges to execute are extracted and executed in a sepa-
rate program with high privileges. The rest of the applica-
tion executes with lower privileges and communication 
between the two parts occurs via IPC calls. This approach 
works well when the security-sensitive resources are well-
defined (e.g. ports < 1024, RSA private key). Privilege 
separation does not scale well, especially for complex 
applications like the browser. In the e-commerce transac-
tion scenario, the parser, keyboard and mouse input and 
the screen output need to be protected. The corresponding 
modules account for around 60% of the browser’s source. 
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Security-sensitive applications can be protected by 
executing them directly on a secure co-processor [50]. 
While isolation protects the application from vulnerabili-
ties in other software, it does not address the issue of vul-
nerabilities in the application itself.  

There are also many efforts addressing application 
specific vulnerabilities like interface spoofing in brows-
ers. Tygar [46] discusses the use of interface personaliza-
tion to thwart interface spoofing attacks. PwdHash [37] 
traps passwords and hashes them with some information 
from the communicating domain as salt before transmit-
ting them. Other extensions like Trustbar [27] and 
SpoofGuard [16] aim to inform the user about the trust-
worthiness of the site based on information like SSL cer-
tificate, URL name and links in the content of the page. 
The security extensions reside in the same address-space 
as the browser and therefore are vulnerable to direct at-
tacks such as buffer-overflow [11]. Techniques such as 
PwdHash are also complementary to our approach; we 
can implement password hashing in AppCores to limit the 
damage from password leaks, even by the remote com-
municating entity. 

EROS Window System (EWS) [42] is an example of 
an essential system service (window manager) that is de-
signed with software size and complexity in mind. EWS 
contains less than 4.5 KLOC and it provides robust trace-
ability of user volition. Our GUI component includes 
user-input drivers and supports higher level widgets 
which accounts for the increased size. EWS illustrates 
that careful refinement of TCB components can further 
reduce the size and complexity of the TCB. 

Static analysis and verification techniques can detect 
bugs and vulnerabilities [17][18][47]. However, they 
work best on relatively small code base due to scalability 
problems.  Our work focuses on reducing the amount of 
security-sensitive code that needs to be analyzed or veri-
fied.  

6.2 Operating System Kernel Design 
There are many projects that aim to build smaller, 

more secure kernels, including security kernels [45], hy-
pervisors [12], VMMs [22], microkernels [32], capability-
based systems [41] and the Linux Security Modules 
(LSM) project [49]. Our goal of reducing software size is 
the same as that of microkernel research.  AppCore re-
search is focused on security-critical applications instead 
of operating system kernels. Moreover, the AppCore ap-
proach builds on system level TCBs, which can be VMM-
based.  

The XOM processor architecture [31] takes a differ-
ent approach and provides security guarantees directly to 
the application, bypassing the operating system. The 
XOM approach eliminates the need for a trusted kernel or 
VMM at the lowest layer. Our work at the application and 
middleware layers is complementary to their approach. 

6.3 Trusted Computing Base 
The Trusted Platform Module (TPM) defined by the 

TCG [10] provides a hardware specification for a TCB. 
TPM provide a secure environment with hardware sup-
port for authenticated booting, secure storage and secure 
IO. At a higher level, Integrity Measurement Architecture 
[39] provides integrity guarantees about the system run-
time. Terra [22] and Microsoft’s Next-Generation Secure 
Computing Base (NGSCB) [1] are similar initiatives that 
aim to provide a system-wide solution that includes hard-
ware, operating system kernel and an execution environ-
ment.  

Existing TCBs leave the application security issues to 
the applications.  The AppCore recognizes that applica-
tions have grown in functionality and size, becoming too 
vulnerable. AppCores extend the good work on develop-
ing small operating system kernels and TCBs [15][28] to 
the application layer.  A suitable underlying TCB is fun-
damental for guaranteeing the system wide security of 
AppCore.  

The PERSEUS system architecture [35] is similar to 
the Nizza security architecture, in that both of them pro-
pose the execution of trusted components on a minimal 
execution environment. Our work focuses on developing 
trusted components for real-world applications, and dem-
onstrating the viability of the Nizza architecture.  

Gokyo [29] is a policy analysis tool that has been 
used to construct minimal TCBs for SELinux. The Gokyo 
tool analyzes existing policies with respect to integrity 
goals and identifies conflicts between policies and goals. 
Based on this information, administrators resolve conflicts 
manually and select components that form the TCB. Cur-
rently, we rely on manual analysis to identify components 
to form the TCB and AppCore. Automating parts of the 
process based on control and data flow analysis and pol-
icy analysis is the subject of future research.  

 

Figure 5. Summary of Related Work. Shaded boxes repre-
sent security-sensitive components 
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7. CONCLUSION 
The large size and high complexity of security-

sensitive applications and systems software has hindered 
effective testing, resulting in end-user systems with a 
number of security vulnerabilities. We alleviate this prob-
lem by reducing the size and complexity of the security-
sensitive application and systems software.  

At the systems software level, we used the Nizza ar-
chitecture as our TCB. Nizza relies on a kernelized TCB 
and on the reuse of legacy code using trusted wrappers to 
reduce the size of the TCB. Additionally, Nizza also al-
lowed us to configure the components of the TCB de-
pending on the needs of the security-sensitive application. 
Using Nizza, we were able to construct TCBs with around 
100,000 lines of code. At the application level, we ex-
tracted security-sensitive portions of an already existing 
application into an AppCore. The AppCore was executed 
as a trusted process in the Nizza architecture and the rest 
of the application was executed as an untrusted process on 
an untrusted, virtualized, legacy operating system. 

We implemented this approach for three real-world 
applications and found considerable reduction in code 
size and complexity (few tens of thousands of lines of 
code for AppCores compared to few hundred thousand 
lines of code for the current applications), with a modest 
loss in performance. In contrast to “monolithic” applica-
tions, the smaller sized AppCores make exhaustive testing 
or formal verification and validation possible and plausi-
ble.  
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