
Reducing TCB Complexity for Security-Sensitive Applications:
Three Case Studies

Lenin Singaravelu1 Calton Pu1 Hermann Härtig2 Christian Helmuth2
1CERCS,

Georgia Institute of Technology
Atlanta, USA.

{lenin, calton}@cc.gatech.edu

2 Technische Universität Dresden,
Institute for System Architecture.

 Dresden, Germany.
{haertig, helmuth}@os.inf.tu-dresden.de

The future of digital systems is complexity, and complex-
ity is the worst enemy of security. -- Bruce Schneier [40].

ABSTRACT

The large size and high complexity of security-
sensitive applications and systems software is a primary
cause for their poor testability and high vulnerability. One
approach to alleviate this problem is to extract the secu-
rity-sensitive parts of application and systems software,
thereby reducing the size and complexity of software that
needs to be trusted. At the system software level, we use
the Nizza architecture which relies on a kernelized trusted
computing base (TCB) and on the reuse of legacy code
using trusted wrappers to minimize the size of the TCB.
At the application level, we extract the security-sensitive
portions of an already existing application into an
AppCore. The AppCore is executed as a trusted process
in the Nizza architecture while the rest of the application
executes on a virtualized, untrusted legacy operating sys-
tem. In three case studies of real-world applications (e-
commerce transaction client, VPN gateway and digital
signatures in an e-mail client), we achieved a considerable
reduction in code size and complexity. In contrast to the
few hundred thousand lines of current application soft-
ware code running on millions of lines of systems soft-
ware code, we have AppCores with tens of thousands of
lines of code running on a hundred thousand lines of sys-
tems software code. We also show the performance pen-
alty of AppCores to be modest (a few percent) compared
to current software.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.4.6 [Operating Systems]: Security and Protection.

General Terms
Reliability, Security.

Keywords
Application security, trusted computing base.

1. INTRODUCTION
Security-sensitive applications such as web browsers

have grown tremendously in functionality and size. For
example, the Mozilla browser contains 1 million lines of
code. Browsers are used for many applications such as
carrying out e-commerce transactions (e.g., handling
credit card information), and viewing and updating per-
sonal information in bank accounts. Unfortunately, the
growing code size has resulted in an increasing number of
vulnerabilities. Attackers have successfully exploited
these vulnerabilities to obtain private information or in-
stall arbitrary code that modifies the browser [11].

At the system level, libraries, middleware and kernel
also have grown similarly in functionality and size. For
example, the X11 window server contains over 1.25 mil-
lion lines of code. X11 executes with superuser privi-
leges and it has been vulnerable to buffer overflow ex-
ploits in the past [6]. A minimal functional configuration
of the Linux kernel contains about 200,000 lines of code,
and the whole kernel runs in privileged mode (x86 archi-
tecture). The Linux kernel too suffers from a host of vul-
nerabilities [7] including buffer overflow, privilege esca-
lation and security bypass.

One approach to alleviate this problem is to extract
security-sensitive parts of application and systems soft-
ware, thereby reducing the size and complexity of soft-
ware that needs to be trusted. Building small and simple
software has been long advocated, e.g., Saltzer and
Schroeder [38], in 1974, advocated Economy of mecha-
nism, Least privilege and Separation of privilege as im-
portant design principles. Software engineering studies
have also shown a positive correlation between software
complexity and bugs in code [21][43]. In addition to the
increased number of bugs, Schneier [40] argues that in-
creased complexity also hinders the ability to understand
and model the system, which leads to more difficult test-
ing and analysis stages. Chen et al. argue that it would be
more secure to run applications on virtualized machines
than real machines, as a virtual machine monitor is con-
siderably smaller and simpler than a regular operating
system kernel [15].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Eurosys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-/06/0004...$5.00.

EuroSys 2006 161

The main contribution of this paper is an integrated
approach to reduce the size of the trusted portion of the
system. At the systems software level, we use the Nizza
architecture as our trusted computing base (TCB). Nizza
is a security architecture that relies on a kernelized TCB
and on the reuse of legacy code – including whole operat-
ing systems – using trusted wrappers to control the size of
the TCB. At the application software level, we extract the
security-sensitive portions of an existing application into
an AppCore. The AppCore is executed as a trusted proc-
ess on the Nizza architecture and the rest of the applica-
tion executes on a virtualized, untrusted legacy operating
system.

We demonstrate the feasibility of this approach by
implementing AppCores and TCBs for three real-world
security-sensitive applications (e-commerce transaction
client, VPN gateway and signatures in an email client).
Compared to the few hundred thousand lines of code of
current application software running on millions of lines
of systems software code, the AppCore’s tens of thou-
sands lines of code running on a hundred thousand lines
of system code are expected to be amenable to exhaustive
testing or formal verification methods. We also show the
performance penalty of AppCores to be modest (a few
percent) compared to current software.

The rest of the paper is organized as follows. Section
2 describes the Nizza architecture, its design principles
and main components. Section 3 describes the construc-
tion of AppCores and TCBs for the three security-
sensitive applications. Section 4 discusses the security
properties and shows the measured results for code size,
complexity and performance of the resultant systems.
Section 5 describes our experiences and observations re-
garding the construction of the AppCores and their
TCB’s. Section 6 discusses the related work and Section 7
concludes the paper.

2. NIZZA ARCHITECTURE
Nizza is a design for a small, secure and general-

purpose platform supporting applications with high secu-
rity requirements such as digital signatures and banking
protocols while preserving the support for legacy code
[23][24].

2.1 Design Principles
The Nizza architecture relies on three design princi-

ples: (1) build TCB out of small, isolated components, (2)
use trusted wrappers to reuse untrusted components and
(3) support legacy operating systems and applications.

Security-sensitive portions of many applications ac-
count for only a small fraction of the overall application
complexity. As it is generally acknowledged that suscep-
tibility to errors and attacks increases with complexity, the
vulnerability of the security-sensitive part can be de-
creased significantly by isolating this part from the secu-
rity-insensitive part. This leads us to the first design prin-
ciple: Only essential security-sensitive functions should

be part of the TCB. In other words, the TCB comprises
only of components that cannot be omitted without com-
promising the functionality and security of the service.
The security requirements fall into four main categories:
confidentiality, integrity, recoverability, and availability.
For clarity, we present the definition of these terms.

Confidentiality: Only authorized users (entities, princi-
pals, etc.) can access information (data, programs, etc.).

Integrity: Either information is current, correct, and com-
plete, or it is possible to detect that these properties do not
hold.

Recoverability: Information that has been damaged can
be recovered eventually.

Availability: Data is available when and where an author-
ized user needs it.

We limit our work in this paper to confidentiality and
integrity and Nizza is evaluated only on these two re-
quirements. For many trusted components, data confiden-
tiality and integrity are vastly more important than avail-
ability. Therefore, it is acceptable to use untrusted com-
ponents if higher layers can guarantee the confidentiality
and integrity of data. Trusted wrappers are components
that help us achieve security objectives even when un-
trusted components are used. For example, the Secure
Sockets Layer (SSL) library is a trusted wrapper for un-
trusted networks, as it allows us to use untrusted compo-
nents like the Internet and an untrusted network stack,
without compromising the confidentiality and integrity
requirements of the application. Trusted wrappers enable
the use of untrusted components like device drivers and
network-protocol stack, allowing us to reduce the size of
the trusted portion of the system.

To provide the full functionality of a standard OS,
Nizza provides containers to securely run untrusted leg-
acy OS components or even complete legacy OSes with
their applications. Nizza facilitates cooperation among
security-sensitive and untrusted components; Legacy ap-
plications can use an appropriately designed interface to
communicate with trusted components, and trusted soft-
ware can reuse legacy components through trusted wrap-
pers.

2.2 Overview of the Nizza Architecture
Figure 1 shows a sketch of the Nizza architecture.

Nizza is composed of four major parts: a small kernel; an
execution environment consisting of trusted components
(such as a name-server and window manager); an un-
trusted legacy OS with its applications; and security-
sensitive applications (discussed in Section 3). In all fig-
ures, shaded boxes represent trusted components and
plain boxes represent untrusted components.

2.2.1 Kernel
The basic requirements for the small kernel are that it

enforces component isolation in protection domains and
provides fast communication between these domains (re-

162 EuroSys 2006

quired for trusted wrappers and other secure-platform
components). The Nizza architecture is based on the L4
microkernel [32]. The L4 microkernel provides three ab-
stractions – threads, address spaces and IPCs. Compo-
nents are executed as L4 threads and isolation is enforced
via address space separation. IPC calls provide a fast
communication channel to transfer control, data or mem-
ory pages.

The current L4 interface has some restrictions that
must be overcome for a complete Nizza implementation:
It currently lacks kernel-resource control and IPC control.
Thus, untrusted components cannot be contained com-
pletely. These problems are expected to be fixed in future
versions of the kernel.

2.2.2 Execution Environment
System servers running in the trusted portion provide

services that are essential to the functioning of the system.
These servers form the trusted execution environment for
the secure applications. We refer to the execution envi-
ronment of L4 as L4Env.

The composition of execution environment varies de-
pending on the needs of the application. The base con-
figuration of L4Env contains a name server and resource
managers for main memory, CPU, and I/O. In addition to
these essential services, system server’s specific to each
application scenario may be incorporated into the TCB.
The window manager (GUI) is an example of an optional
component that provides an interface to manage the dis-
play. Additionally, the window manager provides an un-
forgeable trust indicator to the user. The current imple-
mentation of the window manager uses a few pixels at the
top of the screen, which cannot be accessed by untrusted
applications, to display the authentication chain of the in-
focus application. The window manager also dims win-
dows that are not in focus to provide an unambiguous
association between the active window and the authenti-
cation chain [19]. The loader is an optional dynamic
loader and linker responsible for loading new components
at runtime. The loader needs to be aware of authenticated
booting. It establishes the authentication chain and makes

it available to other trusted components when necessary
(e.g., to the window manager).

2.2.3 Support for Legacy Code
Support for a legacy OS and its applications is critical

for the acceptance of a new architecture. The current im-
plementation of Nizza architecture supports L4Linux [25],
a paravirtualized Linux kernel. L4Linux is binary com-
patible with the unmodified Linux kernel and this allows
the reuse of existing Linux applications. The modified
kernel is executed as a user level task and is isolated by
the microkernel. Therefore, it cannot harm the trusted
components, even if its core, the former Linux kernel, is
compromised.

2.3 Hardware Requirements for Nizza
Nizza relies on hardware support as described in the

specifications of the Trusted Computing Group [10] to
support the security properties described above. Specifi-
cally, it relies on authenticated booting to establish a
chain of authentication for the executing software. The
authentication chain can be used to reassure a remote
party about the application being executed (remote at-
testation). Locally, a user can compare the chain of trust
with a secure copy (e.g., a copy on a USB key) before
logging into the system. Once logged in, the window
manger uses the chain of trust to inform the user about the
trustworthiness of the in-focus application. Sealed storage
protects the confidentiality of the cryptographic keys that
are foundations for the security of the rest of the system.

3. CASE STUDIES IN CONSTRUCTING
SECURITY-SENSITIVE APPLICATIONS

Applications that perform security-sensitive tasks or
handle security-sensitive data have to be trusted. There-
fore, these applications should be as small and simple as
possible, as long as they satisfy the functionality and se-
curity requirements. The large size of current application
software code (e.g., 1 million lines of code in a browser)
makes straightforward porting of existing applications an
unattractive solution. Section 3.1 presents our solution of
extracting security-sensitive functionality of existing ap-
plications into a small AppCore. The AppCore is then
executed as a trusted process, while the rest of the appli-
cation executes as an untrusted process.

3.1 Constructing AppCores
The process of extracting an AppCore from an exist-

ing application can be broadly divided into three stages:
(1) analysis of the application to identify security-
sensitive components, (2) extracting the identified com-
ponents and composing them into an AppCore and (3)
modifying the original application to use the AppCore for
security sensitive tasks.

The function of the analysis stage is to identify com-
ponents that handle security-sensitive data or perform
security-sensitive functions. If the application has reason-
able documentation, this step can be accomplished by

Figure 1. Overview of the Nizza Architecture. Shaded boxes
represent trusted components.

EuroSys 2006 163

analyzing the documentation, e.g., the Mozilla browser
for the E-Commerce transaction client scenario (Section
3.2) is well documented and has clearly-defined modules
making identification easier. Otherwise, we have to
manually identify security-sensitive functions based on
domain knowledge, as in the case of the VPN gateway
AppCore (Section 3.2). This stage can be partially auto-
mated by using dataflow analysis, as described in [14].

In the next stage, we extract the security-sensitive
components and integrate them into a standalone
AppCore. There are two factors that control component
integration: First, to the greatest extent possible, we want
to reuse the interfaces between the security-sensitive com-
ponents and the rest of the application, and second, we
want to constrain the security-sensitive components to
perform only the requisite security-sensitive tasks. Reus-
ing existing interfaces simplifies the reintegration of the
AppCore with the application. Constraining security-
sensitive components involves modifying or rewriting
components to perform the necessary security-sensitive
task with least amount of software, e.g., substituting
Mozilla’s NSS module with a bare-bones SSL library,
MatrixSSL, provides size savings over two orders of
magnitude. However, this could also break existing inter-
faces and increase the cost of reintegration. Thus we have
two conflicting factors influencing component integration.
The design choices are discussed in greater detail in Sec-
tion 5.

The final stage consists of going through the compo-
nents in the original application and replacing the existing
function calls to security-sensitive modules with calls to
the new AppCore. In our case studies, this turned out to
be a straightforward process as we were either reusing
interfaces or the application had a plugin architecture and
we connect the application to the AppCore via plugins.

We study three distinct applications: an e-commerce
transaction client, a VPN gateway implementation and an
email signer. The applications provide variety in terms of
security properties and implementation complexity. The
e-commerce transaction client protects the confidentiality
and integrity of user data, the VPN gateway software pro-
tects the confidentiality and integrity of the private net-
work’s data and the email signer provides integrity of
email content. The e-commerce transaction client and the
email signer are standalone applications that require
analysis of a single software program. On the other hand,
the VPN gateway implementation requires analysis of a
multi-level software stack, including the operating system
kernel (network protocol stack) and the security library.

3.2 E-Commerce Transaction Client
The most popular tool for carrying out an e-

commerce transaction is a browser. Browsers perform two
critical functions for e-commerce – they display content,
in a format determined by the merchant, to the user and
they accept user input and pass them along to the mer-
chant. Data transfers can be protected using a transport

layer security protocol like SSL or TLS. In a typical e-
commerce transaction, initially, the customer builds up a
shopping cart, which can involve multiple rounds of mer-
chant-customer interaction. Next, the customer decides to
finalize the transaction. At this point most merchants use
a transport layer security protocol to protect any further
communication. Once a secure layer has been established,
the customer provides the merchant with payment infor-
mation or unique login information to retrieve a profile.
The merchant verifies this information and finalizes the
transaction.

The large code base of browsers and the support for
extensions via tightly integrated (i.e. executing in the
same address-space) plugins hinder effective testing of
browsers. Browsers are sources of multiple vulnerabilities
including arbitrary code execution and security bypass
[4][5]. Browsers also suffer from spoofing vulnerabilities
where the attacker is able to fool the user into mistaking
an arbitrary site for a trusted site. Attackers have success-
fully exploited these vulnerabilities to install malicious
plugins, and steal private information like passwords and
credit card information. These vulnerabilities illustrate the
risk in using a browser to carry out security-sensitive op-
erations like online purchases. On the other hand, since a
majority of merchants and consumers prefer to use the
browser as a transaction tool, an effective solution must
work within the framework of the browser.

Table 1: Modules in the Mozilla Browser [2]
Type Example Modules

Main Browser Browser, Portable Runtime, Display Wid-
gets, New HTML Parser.

Security Security (NSS & JSS).

Scripting Javascript Engine, Rhino, Live Connect.

Security-
Extras

Personal Security Manager, JS Security.

UI-
Enhancements

Clipping & Compositing, Find as you type,
ImageLib, accessibility.

Parsing-Extras RDF, DOM, XML, XSLT, MathML.

Extras I18N, URI Loader, Zlib, Qt support, Cook-
ies, Plugins, Preferences, Update.

The security-sensitive data in an e-commerce transac-
tion client is the user’s payment and shipping information,
the shopping cart that is displayed to the user, and the
user’s choice about the transaction. Upon analysis of the
browser’s components (Table 1), we find that the follow-
ing components are security-sensitive: the main browser,
which contains the parser, the display, the security library
and basic user-interface components. These components
form a significant portion (over 50%, 500 KLOC) of the
browser’s code base. Composing them into an AppCore
would result in a trusted application smaller than the
original browser, but we can achieve better results by
refining the selected components. We simplify the se-
lected components by limiting their functionality. For
example, constraining the language describing the shop-
ping cart would allow for a smaller parser and display

164 EuroSys 2006

interface. Similarly, implementing only the most used
cryptographic mechanisms would significantly reduce the
size of the security library. We now consider these com-
ponents in more detail.

Browser Parser. This browser component has to un-
derstand a variety of HTML and XML standards with
multiple variants. A shopping cart, for example, can be
described in detail using sophisticated tags and templates.
While this is an expected good usability feature, it intro-
duces potential vulnerabilities due to growing code size.
A cart described using the table tags in HTML would
require a small and specialized parser. As shown in Sec-
tion 4.2, this specialization helps us achieve significant
reductions in the code size and complexity of the
AppCore.

User Interface. There are many demands on a ge-
neric web browser; their functionality has to include the
display of text and images in multiple formats, support
novelties such as tabbed browsing and skins, etc. In con-
trast, a small interface designed for a shopping cart would
focus on the unambiguous display of the cart content and
a clear way to accept or decline the transaction. Our
AppCore uses a text-box-based interface that displays the
table and presents the user with a confirmation window.
We were able to implement this functionality with less
than 500 LOC. While our current interface is primitive,
given the limited expressiveness of the cart data, we ex-
pect that even a more sophisticated interface would be
orders of magnitude smaller than a generic browser.

Security Library. A library implementing either the
SSL or TLS protocol is necessary to carry out secure
transactions over the Internet. In our implementation, we
use MatrixSSL [3], an SSL library with a small footprint
originally developed for embedded systems. The library
provides a minimal set of standard algorithms necessary
for SSL. At less than 10 KLOC it is significantly smaller
and less complex than SSL library in Mozilla (NSS mod-
ule in Mozilla is over 180 KLOC).

AppCore. The parser, security library and the user
interface components are put together to form the
AppCore of the e-commerce transaction client. The over-
all system, depicted in Figure 2, consists of the AppCore,

labeled as E-Commerce Transaction Client, the microker-
nel and an execution environment with the basic L4Env
and a trusted window manager (GUI). The AppCore relies
on an untrusted socket interface proxy to communicate
with the external network. This is a concrete example of
the use of trusted wrappers: We use SSL in the AppCore
to protect the confidentiality and integrity of the data be-
fore passing it over to the proxy. Hence we can afford to
use an untrusted network stack for communication.

3.3 VPN Gateway
A Virtual Private Network (VPN) is a private net-

work that uses public networks for communication. VPN
gateways are used to provide confidentiality, authenticity
and integrity for private network data. These gateways
behave like trusted wrappers, using a tunneling protocol
like IP Security Protocol (IPSec), Point to Point Tunnel-
ing Protocol (PPTP) or Layer 2 Tunnel Protocol (L2TP)
to satisfy the security requirements. In IPSec-based
VPNs, all messages are encrypted using IPSec-compliant
tools before sending them over public networks (e.g., the
Internet). Therefore, the VPN gateway acts as the guard
at the border between networks of different trust/security
levels.

The majority of current VPN implementations are
based on monolithic operating systems (e.g., Linux). In
this case, the IPSec implementation is integrated with the
kernel and intertwined with the network subsystem. Con-
sequently, vulnerabilities in the kernel, the network sub-
system or security library can be exploited to compromise
the VPN software. Some of the vulnerabilities include
buffer overflow [8], which can be used to gain control of
the VPN system, and information leak vulnerabilities,
which allow an attacker access to sensitive information.

A software based VPN implementation generally
contains an operating-system kernel, possibly a stripped
down version (e.g., Snapgear’s Embedded Linux), and an
implementation of the tunneling protocol (e.g.,
FreeS/WAN library provides an IPSec implementation).
We discovered that the security-relevant functions of a
VPN gateway implementation – data protection and pol-
icy enforcement – comprise only a small fraction of a
monolithic kernel (less than 5%). We analyzed the
FreeS/WAN implementation for Linux to identify the data
protection and policy enforcement functions, which were
then extracted into a AppCore called Viaduct.

AppCore. Figure 3(a) illustrates our initial imple-
mentation of the VPN gateway called Mikro-SINA, which
is described in detail in an earlier paper [26]. Mikro-SINA
consists of three main components: On the right is the
private code that interacts with the private network. On
the left is the public code that interacts with the Internet.
In our initial implementation, the private and public net-
work code each use a separate, fully featured L4Linux
VM. Interactions between the two VMs are mediated by
Viaduct. To ensure confidentiality and integrity of private
data, the Viaduct encrypts all traffic before passing it to

Figure 2. AppCore and TCB for a Transaction Client

EuroSys 2006 165

the public L4Linux VM. Conversely, the Viaduct decrypts
the data it receives from the public L4Linux VM and veri-
fies the integrity of the data before passing it to the pri-
vate L4Linux VM. Therefore, the untrusted public code
can only access encrypted data (IPSec ensures confidenti-
ality and integrity of data). Although the private VM can-
not leak information through Viaduct, it can see plaintext
data and therefore has to be trusted as much as the rest of
code on the private side. Hence, the size of the private
L4Linux VM is an added concern.

In an effort to further improve the security properties
of the Mikro-SINA VPN, we refined the private L4Linux
VM. Instead of the full L4Linux VM, we now use cus-
tomized, small components that only perform the func-
tions required for a fully functional VPN gateway. The
result is shown in Figure 3(b). The private side L4Linux
is replaced by the NIC driver plus an address resolution
protocol (ARP) that translates IP addresses into link layer
addresses (e.g., Ethernet MAC address). The public side
L4Linux is replaced by a standalone TCP/IP stack imple-
mentation. The TCP/IP implementation is a port of the
Linux 2.4 network stack and it runs directly on top of the
trusted platform as an untrusted process.

3.4 Signatures in an Email Client – Enigmail
Email signing is used to protect the integrity of the e-

mail content. When a user wants to sign an email, he acti-
vates an extension, which reads the user’s private key and
signs the email’s content. In some cases, the private key
may be in encrypted format, and the user must provide a
passphrase to decrypt the key. The content and the signa-
ture can now be sent over an unprotected network.

Mozilla Thunderbird is a standalone email client that
supports email signing via a third-party plugin – Enig-

mail. Enigmail uses the GnuPG library to read the user’s
private key and sign emails. Enigmail relies on Thunder-
bird to communicate with the user and maintain
passphrases. Effectively, Enigmail has to rely on the cor-
rectness of the email client and the multitudes of plugins
that can be installed on the Thunderbird client to perform
its security-relevant functions correctly. Thunderbird
alone contains over 200 KLOC, making it a very difficult
task to ensure correctness of the email client. Thunderbird
also shares some of the libraries with the Firefox browser
(e.g., HTML parser), thereby sharing the vulnerabilities
too.

Table 2: Modules in Mozilla Thunderbird
Type Example Modules

User Interface Folder view, Email compose

Account Mgt. Address book, Mail account controls

Extras Spell checking, Junk mail control, Mes-
sage filters, Themes, Software Update

Security Password manager, Certificate manager,
Enigmail (as plugin)

To sign an email in Thunderbird, the user selects the
signing option, composes the email and clicks the send
button. The Enigmail plugin then retrieves the passphrase
for the user’s private key and sends it along with the con-
tents of the email to the GnuPG library. GnuPG retrieves
the key, signs the email and sends it back. The security
requirements for the Enigmail plugin are confidentiality
and integrity for the user’s private key and passphrase and
integrity of the content of the email that is signed. Table 2
presents a list of identifiable modules in Thunderbird. The
security modules along with the user interface modules
need to be extracted to satisfy the security requirements.

Figure 3. Mikro-SINA. A VPN Gateway implementation on the Nizza Architecture. Viaduct is the AppCore

proper. The VM on the right, in (a), and ARP/IP Routing software, in (b), are also trusted components.

166 EuroSys 2006

AppCore. The AppCore must be capable of perform-
ing two functions: First, display the content of the email
in an unambiguous fashion, and second, depending on the
user’s preference, sign the email with the user’s private
key. It is important to note that plaintext content is avail-
able to the untrusted component even before signing. It is
the user’s responsibility to ensure that the content has not
changed when the untrusted application passes it to the
AppCore. Since the content is signed in the trusted part,
the key management functionality (GnuPG library) must
be included in the AppCore. The Enigmail AppCore dis-
plays the textual content of the email and waits for user
input. Depending on the preference and the passphrase
provided by the user, the email is either signed and sent
back to the client or discarded. Currently, Enigmail’s
AppCore is limited to displaying text, but it is possible to
add display modules for other standard attachments.

4. EVALUATION
We implemented the AppCores for the three applica-

tions on the Nizza architecture (Section 2). The AppCores
are executed as trusted processes, directly on top of the
microkernel. The untrusted components of applications
run on top of L4Linux, a virtualized, untrusted operating
system. The TCB for each application consists of the L4
microkernel and a set of basic resource managers. In the
e-commerce transaction and the Enigmail scenarios, the
TCB also includes a window manager (GUI).

We choose a trusted computing base based on the
Linux kernel as a competing implementation as we have
unencumbered access to its source code. Moreover, the
Linux platform has open-source implementations for all
three applications. The trusted computing base must con-
tain the Linux kernel. In the case of the e-commerce trans-
action client and the email client, the X Server is also a
part of the trusted computing base.

Section 4.1 discusses the impact of AppCores on the
security of the system. In Section 4.2, we show that it is
possible to construct TCBs for real-world applications
within 100,000 LOC. Section 4.3 discusses the perform-
ance penalty incurred by using AppCores instead of the
original application and we show that the performance
drop is modest in most cases.

4.1 Security Properties of AppCores
The main focus of the AppCore research is to reduce

the size of the trusted computing base at the operating
system, middleware and the application layers. A smaller
and simpler code base has two advantages – a smaller
code base for testing and analysis and a smaller attack
profile. A smaller code base eases the software assurance
process and Section 4.2 discusses the reductions achieved
in greater detail. The lack of an extension architecture is a
concrete example for attack profile reduction in the e-
commerce transaction client and the Enigmail client. Vul-
nerabilities in the extension architecture and malicious
extensions have been used to compromise the confidenti-
ality and integrity of content [11]. Since extensions are
extraneous to security requirements in our case studies,
the resultant AppCores do not possess an extension archi-
tecture. Note that the extension architecture is missing
only in the trusted part of the application. The original
application retains its extension architecture; therefore, we
are able to improve security without sacrificing user ex-
perience.

The Nizza architecture provides confidentiality and
integrity of data at the operating system and middleware
level. These properties are extended to the application
layer by the AppCores. In the e-commerce transaction
client and the VPN gateway scenarios, the AppCores pro-
vide confidentiality and integrity of data by using a trans-
port layer security protocol like SSL or IPSec to encrypt
data before handing it over to untrusted components. The
Enigmail scenario requires integrity of email content,
which is enforced by signing the email with the user’s
private key before passing the content and the signature to
the untrusted application.

Recall that the Nizza architecture provides us with a
trusted window manager that controls the top portion of
the screen (Section 2.2.2). The top of the screen, which
acts as an unforgeable trust indicator, is used by the win-
dow manager to indicate the trust level of the in-focus
application. We assume that the users are a part of the
TCB, i.e., they are aware of the trust indicator when they
give out sensitive data or perform security-sensitive op-
erations. Since, untrusted applications cannot modify the
trust indicator, interface spoofing attacks are minimized.

It is important to note that AppCores do not address
the issue of availability, e.g., malicious entities could
carry out denial of service attacks by corrupting content,
hijacking the untrusted applications, or dropping packets
carrying content from, or to the trusted applications.
While AppCores can detect these attacks, or infer their
presence due to degradation of service, they cannot pro-
tect the application against such attacks. Defensive pro-
gramming techniques [34] can be used to make AppCores
more resistant to these types of attacks.

4.2 Software Complexity Metrics
Given the expected order-of-magnitude differences in

code size, the comparison between an application and its

Figure 4. AppCore for Email Client

EuroSys 2006 167

AppCore do not require a very precise metric. Therefore,
we chose well known software complexity metrics -
Source Lines of Code (LOC), measured using SLOC-
Count [48], and McCabe’s complexity metric (MCC)
[33]. Our goal is to show the overwhelming advantage of
AppCores from many angles, not to distinguish fine dif-
ferences.

Many software engineering studies have shown that
the LOC metric is roughly correlated with the number of
defects [21][43], which may be relatively imprecise, but
serves as a useful baseline measure [13]. MCC is based
on McCabe’s definition [33] of a control flow complexity
metric. It is measured per function and it gives the num-
ber of distinct execution paths in a given function. Intui-
tively, it represents the minimum number of tests that
need to be carried out on that function to verify control
flow properties. One of the weaknesses associated with
the MCC metric is its omission of call nesting depth [44].
So, we also include measurements of call depth as a sepa-
rate parameter in our evaluation.

We are aware that traditional software complexity
metrics like MCC and SLOC have their disadvantages,
e.g., their dependence on programming language and style
[20]. Some of the original applications have had post-
release periods in terms of years allowing for multiple bug
fixes, whereas our approach will result in relatively new
AppCores. Our argument is that vulnerabilities are still
being consistently found in those applications [4][5]. We
show that AppCores are considerably smaller and simpler,
providing us with a clear advantage in testing.

4.2.1 E-Commerce Transaction Client AppCore
Before we compare the code size, we briefly discuss

the functional equivalence between the two programs (our
e-commerce transaction client AppCore and a generic
web browser such as Mozilla) as well as their security
goals. Both approaches support a shopping cart-based
electronic commerce application, with secure data trans-
mission between the client and server typical of such se-
curity-sensitive applications. The data confidentiality and
integrity requirements are fulfilled by a secure transport
protocol such as SSL. Table 3 shows the contrast between
a generic browser-based application and an AppCore-
based approach. We compare the software complexity (in
LOC, MCC, and call depth) of the security-sensitive code
from the two approaches. The AppCore simplifies the
functionality of the security-sensitive code in two main
components: a smaller SSL library and a very narrow
subset of HTML to describe the cart. We observe the
simplification of components provides considerable re-

ductions in software size. The entire AppCore is about
one hundredth the size of the Mozilla browser. Similar
reductions are seen with the MCC metric.

4.2.2 VPN Gateway AppCore
The initial Mikro-SINA VPN design (Figure 3a) that

uses L4Linux for the private network code results in a
system with a large code base that needs to be trusted (~
200 KLOC for L4Linux). The minimalized Mikro-SINA
(Figure 3b) resolves the problem by refining the trusted
processes, replacing L4Linux (on both private and public
sides) with customized network stack. The result is a
very small VPN gateway, both in terms of trusted
AppCore and a relatively small untrusted networking
code, with about 80 KLOC on the public side, and a small
ARP component (8000 lines) on the private side. Table 4
compares the software complexity of Mikro-SINA to the
FreeS/WAN implementation. The Linux kernel numbers
are obtained from Snapgear’s Embedded Linux distribu-
tion [9]. The Mikro-SINA VPN possesses a twofold ad-
vantage in complexity and size over the FreeS/WAN im-
plementation.

4.2.3 Enigmail AppCore
The original Enigmail plugin is tightly integrated

with the Thunderbird email client. It also relies on the
GnuPG library to sign and verify emails. The AppCore
for Enigmail has its own display and user input modules
but it still requires the GnuPG library to sign emails.
Thunderbird, Enigmail and the GnuPG library together
account for over 250 KLOC, whereas the Enigmail
AppCore which includes the ported GnuPG library con-
tains less than 54 KLOC. The results for MCC metric
show a fourfold reduction in complexity – 11,000 for the
AppCore and 45,000 for the Thunderbird application
along with the GnuPG library.

Table 3: Complexity Comparison of E-Commerce Trans-
action Client AppCore and Mozilla. Level of shading indi-
cates functional equivalence of components.

Component LOC Cumul.
MCC

Avg.
MCC

Avg.
Depth

MatrixSSL 8,600 1,200 7.5 1.70

Mozilla-NSS 180,000 24,700 8.7 1.47

Custom Parser 200 35 5.8 1.70

HTML-Mozilla 19,000 3,100 15.3 2.08

AppCore 10,000 1,500 7.4 1.67

Mozilla 978,000 151,000 6.2 1.72

Table 4: Complexity Comparison of Mikro-SINA and FreeS/WAN
Component LOC Cumul. MCC Avg. MCC Avg. Depth

Mikro-SINA Viaduct 10,400 990 4.1 1.31

FreeS/WAN 34,100 4,300 7.9 1.56

Mikro-SINA VPN + L4+L4Env+Viaduct 74,000 10,000 4.6 1.54

FreeS/WAN + Snapgear Linux 155,000 25,000 5.8 1.59

168 EuroSys 2006

4.2.4 Software Complexity of a TCB
We have seen that at the application level, refactoring

and refining an application significantly reduces code size
and complexity. Since the AppCores will be running on
top of a TCB, it is also necessary for the TCB to be rela-
tively small and simple. Using a Linux kernel (over 200
KLOC) as a TCB would run counter to the notion of a
small TCB.

The composition of the TCB varies depending on the
requirements of the AppCore. The microkernel is an inte-
gral part of our TCB. The basic L4Env consists of re-
source managers, naming service and an IO server. The
window manager (GUI) and loader are optional compo-
nents. An AppCore like Mikro-SINA would require just
the basic configuration. AppCores like trusted email
signer and transaction clients would require a GUI en-
abled TCB. A dynamic loader is required for situations
where a user or application would like to load new trusted
applications. Table 5 lists the complexities of the various
TCB components and configurations. Since some files are
shared between various servers, each progressively com-
plex TCB configuration does not increase proportionally
in size and complexity. The first observation from the
measurements is that significant size and complexity re-
ductions can be attained with careful composition of the
TCB. Secondly our TCB configuration is an order of
magnitude smaller than a Linux based platform.

4.3 Performance
Our approach of refactoring applications generates

two processes coordinating to perform a task that previ-
ously required a single process. While refactoring im-
proves security, as now a smaller portion of the original
application has access to sensitive data, it also results in
performance degradation. There are two main contribu-
tors to the performance penalty: first, the overhead of
running the application on top of a virtual machine and
second, data transfer and context switch times between
the AppCore and the application. The issue of application
performance on L4Linux has been addressed in detail in
an earlier work [25]. The conclusion was that perform-
ance penalty for most applications can be contained
within the 5-10% range.

We present the results of a series of micro-
benchmarks to demonstrate the performance of the main
L4 - L4Linux interactions.

4.3.1 Data Transfer Rates between L4Linux & L4.
The following experiments were performed on a Pen-

tium-4 2.24 GHz machine with 512 MB RAM and front
side bus speed of 400 MHz. The standard deviation for
the experiments in this section is less than 1 % of the
mean.

Each L4Linux process is implemented as an L4 task
[25]. Communication between an L4 process and an
L4Linux process uses L4’s IPC mechanism, which is in-
dependent of the guest operating system (L4Linux).
Therefore we just have to measure communication latency
and throughput between two L4 tasks. L4 provides multi-
ple ways for inter-address space communication and data
transfer. We discuss two of them - Direct IPC, which uses
registers to transfer data and Indirect IPC, which uses
string copies to transfer data.

The results in Table 6 are for inter-address space di-
rect IPC, in which 32 bits of data is transferred via regis-
ters. The client calls the server with a receive-timeout
value and the server replies with a 32 bit value in a regis-
ter. Since L4 optimizes the infinite-timeout-value (inf-
timeout) data transfers, we present the results for inf-
timeout and a nominal one-second-timeout data transfer.
The context switch times are calculated from the through-
put values (Inverting the throughput value and dividing
by two). We can see that direct IPC is not suited for data
transfers due to low throughput, but they can serve as an
inexpensive notification mechanism.

L4 provides support for fast data transfers via indirect
string transfer IPCs. In our experiments, the client calls
the server with an inf-timeout value and the server replies
with an indirect string, which is copied to the client’s ad-
dress space. Table 7 compares the throughput of indirect
IPC against FIFO’s in Linux. We see that the maximum
throughput values in both systems are comparable.

Table 6: 32 Bit Transfer: via registers
Client Timeout Throughput (MBps) Context Switch (us)

Inf. Timeout 2.90 0.690

1 sec Timeout 1.73 1.158

Table 5: Complexity of the Trusted Computing Base
Component LOC Cumul. MCC Avg. MCC Avg. Depth

L4 microkernel 14,000 2,300 3.5 1.39

Basic L4Env 54,500 7,000 5.0 1.58

GUI 35,600 4,600 6.7 1.36

Loader 37,000 5,000 5.7 1.69

Basic TCB: microkernel + Basic L4Env 69,000 9,500 4.5 1.54

Basic TCB + GUI 87,600 12,300 5.2 1.48

Basic TCB + GUI + Loader 100,200 14,000 5.2 1.50

Linux Kernel + XServer 1,485,000 238,000 7.7 1.73

EuroSys 2006 169

Table 7: Data Transfer Throughput in MBps.
Linux FIFO vs. Indirect String Transfer in L4.
Size

(Bytes)
FIFO

(Linux)
Indirect String
Transfer (L4)

256 68.95 88.01

4,096 588.55 863.81

8,192 664.69 792.17

16,384 799.03 801.70

32,768 822.22 763.89

65,536 879.94 715.95

4.3.2 E-Commerce Transaction Client
We now measure the time to carry out a typical e-

commerce transaction using the transaction client
AppCore. The transaction client initiates an SSL connec-
tion and receives the cart from the web-server. It displays
the cart and waits for the user’s response. Depending on
the user’s response, the client either sends the user’s pay-
ment and shipping information back to the server and
finalizes the transaction or aborts it. Since we are inter-
ested in finding out the minimum time to execute the
transaction, we eliminate user-interaction by assuming
that the user always wants to accept the transaction. Table
8 lists the server-side execution time for a transaction
over a loopback interface. Each column title represents
the execution environment of the client and server respec-
tively. The execution time for the trusted scenario (L4 -
L4Linux) is around 11 % slower than the Linux scenario.
But in absolute terms, the execution time is less than 50
ms, which is insignificant when compared to user re-
sponse time (order of seconds).

Table 8: Execution time for an E-Commerce Transaction
Client-Server

pairs
Linux-
Linux

L4Linux -
L4Linux

L4 -
L4Linux

Time (ms) 39.1 40.2 43.5

Stdev % 0.2 10.6 8.0

4.3.3 Mikro-SINA VPN Gateway
Table 9 presents the throughput results from the Net-

perf TCP_STREAM benchmark for the competing VPN
implementations. The experiment duration per test run
was 1 minute. The VPN implementations ran on a Pen-
tium-4 1.80 GHz machine with 512 MB RAM and two
EEPRO Fast Ethernet enabled cards. In the FreeS/WAN
implementation, a single process handles both the external
and internal interfaces. This design minimizes overhead
and allows FreeS/WAN to achieve higher throughput. On
the other hand, Mikro-SINA separates the handling of the
external and internal interfaces. The separation adversely
affects the performance as shown in Table 9 but provides
better security features as an attack on the external inter-
face will not provide the attacker with access to plaintext
data.

Table 9: Throughput Comparison of Mikro-SINA and
Free/SWAN. All numbers are in Mbps.

Encryption Linux-2.4 FreeS/WAN Mikro-SINA

Null 94.9 93.9

3DES-MD5 63.8 32.2

5. LESSONS LEARNED
The construction and evaluation of AppCores and

their TCBs presented us with some insights. Some of our
observations are straightforward – AppCore construction
is easier if we can establish a clean separation between the
security-sensitive and security-insensitive portions. This
is possible if (a) the original application has a well-
defined and well-documented modular design and (b) the
security-sensitive task spans a small subset of the mod-
ules. Other observations revealed themselves as crucial
design-decisions during the construction process.

Identifying the Point of Separation: Sacrificing per-
formance for security

Deciding on the point of separation is a straightfor-
ward process in many cases. For example, in the e-
commerce transaction scenario, the point of separation
occurs when the user has to input security-sensitive data
(profile or payment information) and in the email client
scenario, the point of separation occurs when the user has
to enter a passphrase to retrieve his key.

However, there are cases where there is more than
one point of separation – generally involving a tradeoff
between performance and modularity. For example, in the
FreeS/WAN implementation, IPSec policy enforcement
occurs at the IP layer, whereas the actual encryp-
tion/decryption occurs after the TCP layer. This optimiza-
tion improves performance as the IP layer can drop pack-
ets that do not confirm to the policy rather than dropping
the errant packets after transport layer processing. But
modularity is sacrificed as the security subsystem is now
entangled with other functionality. During the construc-
tion of the VPN gateway AppCore, we had three choices
(a) incorporate the network stack into the TCB (b) keep
the network stack out of the TCB and replace IPSec func-
tion calls from the untrusted network stack with IPC calls
to the trusted components or (c) keep the network stack
out of the TCB and sacrifice the performance optimiza-
tions at the IP layer. The first choice was not really con-
sidered as it would mean increasing the size of the TCB
by almost half (40,000 LOC). The second option resulted
in a messy separation as there were trusted calls from
multiple layers of the network stack (IP layer needs access
to IPSec policy and TCP layer provides the packets for
encryption/decryption). The third option sacrifices some
performance by eliminating the optimizations from the
network layer but results in a simpler interface between
the trusted IPSec implementation and the untrusted net-
work stack (send and receive packets).

170 EuroSys 2006

Extracting security-sensitive components: Reusing
existing interfaces simplifies separation and reintegra-
tion

Ideally, when we split an application into security-
sensitive and security-insensitive parts, we would like to
retain the interface between the two parts. Reusing exist-
ing interfaces allows us to limit the changes to modifying
the call type, e.g., changing security-sensitive function
calls to L4 IPC calls with appropriate marshalling and
unmarshalling code. This involves identifying the location
of the calls, which can be accomplished with tools in most
cases. If the original application possesses a plugin archi-
tecture (e.g., plugin architecture in Mozilla Thunderbird),
this task is even simpler, as we just have to write a plugin
that acts as a bridge between the AppCore and the un-
trusted application.

Refining security-sensitive components: Reducing
complexity through manual analysis

Once we have extracted security-sensitive compo-
nents, we can achieve further reductions in size and com-
plexity by refining the components to perform only the
requisite security-sensitive tasks. This requires consider-
able manual effort; for each component that can be re-
fined, we have to incorporate simpler alternatives. This
often breaks the interfaces between the security-sensitive
components but it is worth the effort as we gain enormous
savings in terms of software size and complexity.

For example, we considered various alternatives
when replacing the HTML parser from Mozilla (19K
LOC) for the E-commerce transaction client. Our first
step was to use the Expat XML parser, which contains
about 10K lines of code. The use of XML allowed us to
have rich, extensible language for the shopping cart. But
it represented over 50% of the final AppCore. This led us
to consider various alternatives for a shopping cart de-
scription language – trading off extensibility for size and
complexity (plain text could be ambiguous for the user,
compressed image formats require complex parsers, and
raw images consume too much bandwidth). Finally, we
settled on the table tags of HTML to describe a shopping
cart. Since we changed the shopping-cart description for-
mat, we had to change the parser for the AppCore and the
remote agent (usually a web-server) involved in the trans-
action. On the other hand, the custom parser provided
limited extensibility and size and complexity savings over
one order of magnitude (Table 3).

The initial design for the VPN gateway (Section 3.3)
had a full-fledged Linux-based VM as a trusted compo-
nent. While the underlying TCB prevents the private VM
from communicating with untrusted components or the
external network, we would have to rely on its correctness
to preserve the confidentiality and integrity of plaintext
data. Since the private VM is just used to transmit packets
over the private network, we decided to replace it with
ARP/IP routing software. While this required reprogram-
ming the AppCore and getting the ARP code to run as a

standalone process, we were able to replace the 200
KLOC of L4Linux with 8 KLOC of ARP code.

Trusted Wrappers: Tradeoffs between system com-
plexity, security and performance

Trusted wrappers are components that enable the
utilization of untrusted components in lower layers of the
system. We were able to reuse the network stack execut-
ing in an untrusted and virtualized legacy operating sys-
tem as we used security protocols like SSL (E-commerce
transaction scenario) and IPSec (VPN gateway scenario)
to protect the confidentiality and integrity of data. The use
of trusted wrappers allowed us to push the TCP/IP stack
out of the TCB, which resulted in savings of over 40
KLOC. This approach also provides another significant
advantage: we retain the full functionality of the original
network stack implementation, which cannot be provided
by alternate solutions like lightweight TCP/IP implemen-
tations.

Trusted wrappers do not come for free. We can look
at trusted wrappers as exploring tradeoffs in two different
areas. The first tradeoff deals with attacks: attacks on con-
fidentiality and integrity on one hand and attacks on avail-
ability on the other. Trusted wrappers allow us to (re)use
untrusted components. We are therefore exposing a
trusted application to denial of service attacks via the
reused untrusted components. On the other hand, we are
also reducing the attack profile for attacks on confidenti-
ality and integrity by reducing the size of the trusted ap-
plication. This is an acceptable tradeoff as in many situa-
tions confidentiality and integrity of data is more impor-
tant than availability. Moreover, there could be other
components in the system, beyond our control, which are
susceptible to denial of service attacks, e.g., the Internet
in a web-based application. The second tradeoff is one of
security and performance. We have shown that perform-
ance degradation is modest (few percent) in most cases,
and we feel that the gains in security outweigh the losses
in performance.

6. RELATED WORK
A summary of existing techniques to protect the vari-

ous components of a system is presented in Figure 5.

6.1 Application Software Design
Privilege separation [14][30][36] is a technique

wherein the portions of a application that require high
privileges to execute are extracted and executed in a sepa-
rate program with high privileges. The rest of the applica-
tion executes with lower privileges and communication
between the two parts occurs via IPC calls. This approach
works well when the security-sensitive resources are well-
defined (e.g. ports < 1024, RSA private key). Privilege
separation does not scale well, especially for complex
applications like the browser. In the e-commerce transac-
tion scenario, the parser, keyboard and mouse input and
the screen output need to be protected. The corresponding
modules account for around 60% of the browser’s source.

EuroSys 2006 171

Security-sensitive applications can be protected by
executing them directly on a secure co-processor [50].
While isolation protects the application from vulnerabili-
ties in other software, it does not address the issue of vul-
nerabilities in the application itself.

There are also many efforts addressing application
specific vulnerabilities like interface spoofing in brows-
ers. Tygar [46] discusses the use of interface personaliza-
tion to thwart interface spoofing attacks. PwdHash [37]
traps passwords and hashes them with some information
from the communicating domain as salt before transmit-
ting them. Other extensions like Trustbar [27] and
SpoofGuard [16] aim to inform the user about the trust-
worthiness of the site based on information like SSL cer-
tificate, URL name and links in the content of the page.
The security extensions reside in the same address-space
as the browser and therefore are vulnerable to direct at-
tacks such as buffer-overflow [11]. Techniques such as
PwdHash are also complementary to our approach; we
can implement password hashing in AppCores to limit the
damage from password leaks, even by the remote com-
municating entity.

EROS Window System (EWS) [42] is an example of
an essential system service (window manager) that is de-
signed with software size and complexity in mind. EWS
contains less than 4.5 KLOC and it provides robust trace-
ability of user volition. Our GUI component includes
user-input drivers and supports higher level widgets
which accounts for the increased size. EWS illustrates
that careful refinement of TCB components can further
reduce the size and complexity of the TCB.

Static analysis and verification techniques can detect
bugs and vulnerabilities [17][18][47]. However, they
work best on relatively small code base due to scalability
problems. Our work focuses on reducing the amount of
security-sensitive code that needs to be analyzed or veri-
fied.

6.2 Operating System Kernel Design
There are many projects that aim to build smaller,

more secure kernels, including security kernels [45], hy-
pervisors [12], VMMs [22], microkernels [32], capability-
based systems [41] and the Linux Security Modules
(LSM) project [49]. Our goal of reducing software size is
the same as that of microkernel research. AppCore re-
search is focused on security-critical applications instead
of operating system kernels. Moreover, the AppCore ap-
proach builds on system level TCBs, which can be VMM-
based.

The XOM processor architecture [31] takes a differ-
ent approach and provides security guarantees directly to
the application, bypassing the operating system. The
XOM approach eliminates the need for a trusted kernel or
VMM at the lowest layer. Our work at the application and
middleware layers is complementary to their approach.

6.3 Trusted Computing Base
The Trusted Platform Module (TPM) defined by the

TCG [10] provides a hardware specification for a TCB.
TPM provide a secure environment with hardware sup-
port for authenticated booting, secure storage and secure
IO. At a higher level, Integrity Measurement Architecture
[39] provides integrity guarantees about the system run-
time. Terra [22] and Microsoft’s Next-Generation Secure
Computing Base (NGSCB) [1] are similar initiatives that
aim to provide a system-wide solution that includes hard-
ware, operating system kernel and an execution environ-
ment.

Existing TCBs leave the application security issues to
the applications. The AppCore recognizes that applica-
tions have grown in functionality and size, becoming too
vulnerable. AppCores extend the good work on develop-
ing small operating system kernels and TCBs [15][28] to
the application layer. A suitable underlying TCB is fun-
damental for guaranteeing the system wide security of
AppCore.

The PERSEUS system architecture [35] is similar to
the Nizza security architecture, in that both of them pro-
pose the execution of trusted components on a minimal
execution environment. Our work focuses on developing
trusted components for real-world applications, and dem-
onstrating the viability of the Nizza architecture.

Gokyo [29] is a policy analysis tool that has been
used to construct minimal TCBs for SELinux. The Gokyo
tool analyzes existing policies with respect to integrity
goals and identifies conflicts between policies and goals.
Based on this information, administrators resolve conflicts
manually and select components that form the TCB. Cur-
rently, we rely on manual analysis to identify components
to form the TCB and AppCore. Automating parts of the
process based on control and data flow analysis and pol-
icy analysis is the subject of future research.

Figure 5. Summary of Related Work. Shaded boxes repre-
sent security-sensitive components

172 EuroSys 2006

7. CONCLUSION
The large size and high complexity of security-

sensitive applications and systems software has hindered
effective testing, resulting in end-user systems with a
number of security vulnerabilities. We alleviate this prob-
lem by reducing the size and complexity of the security-
sensitive application and systems software.

At the systems software level, we used the Nizza ar-
chitecture as our TCB. Nizza relies on a kernelized TCB
and on the reuse of legacy code using trusted wrappers to
reduce the size of the TCB. Additionally, Nizza also al-
lowed us to configure the components of the TCB de-
pending on the needs of the security-sensitive application.
Using Nizza, we were able to construct TCBs with around
100,000 lines of code. At the application level, we ex-
tracted security-sensitive portions of an already existing
application into an AppCore. The AppCore was executed
as a trusted process in the Nizza architecture and the rest
of the application was executed as an untrusted process on
an untrusted, virtualized, legacy operating system.

We implemented this approach for three real-world
applications and found considerable reduction in code
size and complexity (few tens of thousands of lines of
code for AppCores compared to few hundred thousand
lines of code for the current applications), with a modest
loss in performance. In contrast to “monolithic” applica-
tions, the smaller sized AppCores make exhaustive testing
or formal verification and validation possible and plausi-
ble.

8. ACKNOWLEDGEMENTS
We would like to thank Alexander Warg for his

enormous contribution to the Mikro-SINA architecture
and implementation. We would also like to thank our
shepherd, Steven Hand, and the anonymous reviewers and
for their valuable feedback. The authors from Georgia
Tech were partially supported by NSF/CISE IIS and CNS
divisions through grants CCR-0121643, IDM-0242397
and ITR-0219902, DARPA/IPTO through grant FA8750-
05-1-0253, and Hewlett-Packard. The authors from TU
Dresden were supported by grants from BMWi, DFG, and
Intel.

9. REFERENCES
[1] Microsoft. Next-Generation Secure Computing Base.

http://www.microsoft.com/resources/ngscb
/default.mspx

[2] Mozilla Foundation. Mozilla Module Owners.
http://www.mozilla.org/owners.html

[3] PeerSec Networks. MatrixSSL - Open Source Embedded
SSL. http://www.matrixssl.org/

[4] Secunia. Vulnerability Report – Microsoft Internet Ex-
plorer 6. http://secunia.com/product/11/

[5] Secunia. Vulnerability Report – Mozilla Firefox 1.x.
http://secunia.com/product/4227/

[6] Secunia. Vulnerability Report – X11 Windowing System
(X11) 6.x. http://secunia.com/product/3913/

[7] Secunia. Vulnerability Report – Linux Kernel 2.4.x.
http://secunia.com/product/763/

[8] Secunia. Check Point VPN-1 Products ISAKMP Buffer
Overflow Vulnerability.
http://secunia.com/advisories/11546/

[9] Snapgear. Snapgear Embedded Linux.
http://www.snapgear.org

[10] Trusted Computing Group. TCG Main Specification v1.1b,
https://www.trustedcomputinggroup.org/

[11] J. Bambenek, SANS Institute. BHO scanning tool and New
Scam Targets Bank Customers.
http://isc.sans.org
/diary.php?date=2004-06-29.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A.Warfield. Xen and the
Art of Virtualization. In Proc. 19th ACM Symposium on
Operating Systems Principles (SOSP 2003), NY, Oct. 2003.

[13] V. Basili and D. Hutchens. An Empirical Study of a Com-
plexity Family. In IEEE Transactions on Software Engi-
neering, Volume 9, No. 6, November 1983, pp. 664-672.

[14] D. Brumley, D. X. Song. Privtrans: Automatically Parti-
tioning Programs for Privilege Separation. In Proc.
USENIX Security Symposium, San Diego, USA. Aug 9-13,
2004.

[15] P. M. Chen and B.D. Noble. When Virtual is Better Than
Real, In Eighth Workshop on Hot Topics in Operating Sys-
tems, May 2001, Elmau, Germany.

[16] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh and J. C.
Mitchell, Client-side defense against web-based identity
theft, In 11th Annual Network and Distributed System Secu-
rity Symposium (NDSS '04), San Diego, February, 2004.

[17] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system specific programmer-written
compiler extensions. In 4th USENIX OSDI. San Diego, Oct.
2000.

[18] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In 18th SOSP. Banff, Canada, Oct.
2001.

[19] N. Feske, C. Helmuth: A Nitpicker's guide to a minimal-
complexity secure GUI. In Proc. of the 21st Annual Com-
puter Security Applications Conference, Tucson, Arizona,
USA, Dec. 2005

[20] N. E. Fenton, N. Ohlsson., Quantitative Analysis of Faults
and Failures in a Complex Software System. In IEEE
Trans. Software Eng. 26(8): 797-814, 2000.

[21] Gaffney, J., Program Control Complexity and Productivity.
In Proceedings of the IEEE Workshop on Quantitative
Software Models, pg 179, October, 1979.

[22] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D.
Boneh. Terra: A virtual machine-based platform for trusted
computing. In Proc. of the 19th SOSP, October 2003.

[23] H. Härtig. Security architectures revisited. In Proceedings
of the Tenth ACM SIGOPS European Workshop, Saint-
Emilion, France, September 2002.

[24] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lack-
orzynski, F. Mehnert and M. Peter. The Nizza Secure-
System Architecture. In IEEE CollaborateCom 2005. San
Jose, USA. Dec 2005.

EuroSys 2006 173

[25] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J.Wolter. The performance of µ-kernel-based systems. In
Proc. 16th ACM Symposium on Operating System Princi-
ples, pp 66–77, Oct. 1997.

[26] C. Helmuth, A. Warg, and N. Feske. Mikro-SINA—Hands-
on Experiences with the Nizza Security Architecture. In
Proceedings of the D.A.C.H Security 2005, Darmstadt,
Germany, March 2005.

[27] A. Herzberg and A. Gbara, TrustBar: Protecting (even Na-
ïve) Web Users from Spoofing and Phishing Attacks, Cryp-
tology ePrint Archive, Report 2004/155. 2004.

[28] Hohmuth, M., M. Peter, H. Härtig, and J. Shapiro. “Reduc-
ing TCB size by using untrusted components – small ker-
nels versus virtual machine monitors”, in Proc. of the 11th
ACM SIGOPS European Workshop, Leuven, Belgium,
2004.

[29] T. Jaeger, R. Sailer, and X. Zhang, Analyzing Integrity
Protection in the SELinux Example Policy, in 12th USENIX
Security Symposium, Washington D.C. USA, Aug. 2003.

[30] D. Kilpatrick, Privman: A Library for Partitioning Applica-
tions. In USENIX Annual Technical Conference, FREENIX
Track 2003, pp 273-284. San Antonio USA, July 2003.

[31] D. Lie, C.A. Thekkath and M. Horowitz, Implementing an
untrusted operating system on trusted hardware, In 19th
ACM-SOSP,2003, Bolton Landing, NY.

[32] J. Liedtke, On Micro-Kernel Construction, In 15th ACM
Symposium on Operating System Principles, Copper moun-
tain Resort, Colorado, USA. Dec. 1995.

[33] T.J. McCabe, A Complexity Measure, IEEE Transactions
on Software Engineering, SE-2 No. 4, pp. 308-320, Dec.
1976.

[34] X. Qie, R. Pang, L. L. Peterson, Defensive Programming:
Using an Annotation Toolkit to Build DoS-Resistant Soft-
ware. In OSDI 2002, Boston, Dec. 2002.

[35] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner and A.
Weber. The PERSEUS System Architecture. Research Re-
port. IBM Research Division. RZ 3335. Sept. 2001.

[36] N. Provos, M. Friedl, and P. Honeyman. Preventing privi-
lege escalation. In 12th USENIX Security Symposium,
Washington D.C, Aug. 2003.

[37] B. Ross, C. Jackson, N. Miyake, D. Boneh and J. C.
Mitchell, Stronger Password Authentication Using Browser
Extensions. In 14th Usenix Security Symposium, Baltimore,
USA, Aug. 2005.

[38] JH Saltzer and MD Schroeder, The Protection of Informa-
tion in Computer Systems, Proc. of the IEEE, Vol.63, No.9,
Sept. 1975, pp.1278-1308.

[39] R. Sailer, X. Zhang, T. Jaeger, and L. V. Doorn. Design
and Implementation of a TCG-based Integrity Measure-
ment Architecture. In Proceedings of Thirteenth USENIX
Security Symposium, pp 223--238, August 2004.

[40] B. Schneier. Software Complexity and Security. Crypto-
Gram Newsletter. March 2000. http://www.schneier.com/
crypto-gram-0003.html

[41] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A Fast
Capability System. In Proc. 17th ACM Symposium on Op-
erating Systems Principles. Charleston, SC, USA. Dec.
1999.

[42] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chiz-
madia, Design of the EROS Trusted Window System, In
Proc. USENIX Security Symposium, San Diego CA, 2004

[43] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, Iden-
tifying Error-prone Software --- An Empirical Study, In
IEEE TOSE, Vol. SE-11, pp. 317--323, April 1985.

[44] Shepperd, M., Ince, D.C., Derivation and Validation of
Software Metrics. pp 37-40. Oxford Science Publications,
1993.

[45] R. Spencer, S.Smalley, P. Loscocco, M. Hibler,
D.Andersen and J. Lepreau. The Flask Security Architec-
ture: System Support for Diverse Security Policies. In Pro-
cedings of the 8th USENIX Security Symposium, Aug. 1999.

[46] J. D. Tygar and A. Whitten. WWW electronic commerce
and Java Trojan horses. In Proc. of the 2nd USENIX Work-
shop on Electronic Commerce, Nov. 1996, pp. 243-250.

[47] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabili-
ties. In Proceedings of the ISOC Symposium on Network
and Distributed System Security, 2000.

[48] D. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/

[49] Wright, C., C. Cowan, S. Smalley, J. Morris, G. Kroah-
Hartman. Linux Security Modules: General Security Sup-
port for the Linux Kernel. In the Proceedings of the 2002
Usenix Security Symposium, Aug 2002, San Francisco.

[50] B. Yee and D. Tygar. Secure coprocessors in electronic
commerce applications. In Proc. of the First USENIX
Workshop on Electronic Commerce, New York, July 1995.

174 EuroSys 2006

